Cho hàm số bậc nhất \[y = \left( {3-m} \right)x + 3m + 2.\] Tìm các giá trị của \[m\] để đồ thị hàm số đã cho là
a) đường thẳng đi qua điểm \[\left( {1;{\rm{ }}3} \right).\]
b) đường thẳng cắt đường thẳng \[y = x-1\] tại một điểm nằm trên trục tung.
Cho hàm số bậc nhất \[y = \left( {3-m} \right)x + 3m + 2.\] Tìm các giá trị của \[m\] để đồ thị hàm số đã cho là
a) đường thẳng đi qua điểm \[\left( {1;{\rm{ }}3} \right).\]
b) đường thẳng cắt đường thẳng \[y = x-1\] tại một điểm nằm trên trục tung.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Để đường thẳng \[y = \left( {3-m} \right)x + 3m + 2\] đi qua điểm \[\left( {1;3} \right)\] thì \(x = 1\) và \(y = 3\) thỏa mãn hàm số trên.
Do đó ta có: \[3 = \left( {3-m} \right) \cdot 1 + 3m + 2\]
\[3 = 3-m + 3m + 2\]
\[2m = - 2\]
\(m = - 1.\)
Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.
b) Để đường thẳng \[y = \left( {3-m} \right)x + 3m + 2\] cắt đường thẳng \[y = x-1\] thì \(3 - m \ne 1,\) hay \(m \ne 2.\)
Gọi \(A\left( {{x_A};{y_A}} \right)\) là giao điểm của hai đường thẳng.
Để hai đường thẳng trên cắt nhau tại điểm \(A\left( {{x_A};{y_A}} \right)\) nằm trên trục tung thì \({x_A} = 0.\)
Thay \(x = {x_A} = 0\) và \(y = {y_A}\) vào hàm số \[y = x--1\] ta được \({y_A} = 0 - 1 = - 1.\)
Thay \(x = {x_A} = 0\) và \(y = {y_A} = - 1\) vào hàm số \[y = \left( {3--m} \right)x + 3m + 2\] ta được:
\[ - 1 = \left( {3-m} \right) \cdot 0 + 3m + 2\]
\[ - 1 = 3m + 2\]
\[m = - 1\] (thỏa mãn \(m \ne 2).\)
Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \[x\left( {x - 4} \right) - x + 4 = 0\]
\(x\left( {x - 4} \right) - \left( {x - 4} \right) = 0\)
\(\left( {x - 4} \right)\left( {x - 1} \right) = 0\)
\(x - 4 = 0\) hoặc \(x - 1 = 0\)
\(x = 4\) hoặc \(x = 1\).
Vậy \(x = 4\); \(x = 1\).Lời giải
a) \(\left( {x + 2} \right)\left( {x + 3} \right) - x\left( {x + 6} \right) = 4\)
\({x^2} + 3x + 2x + 6 - {x^2} - 6x = 4\)
\( - x + 6 = 4\)
\( - x = - 2\)
\(x = 2\).
Vậy \(x = 2.\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\) với \(x \ne 1\) và \(x \ne - 1.\)
a) Chứng minh \(B = \frac{4}{{x + 1}}.\)
b) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.