Tam giác \(ABC\) vuông tại \(B\) có \[BC = 12{\rm{\;cm}}\] và \(AC = 13{\rm{\;cm}}.\) Độ dài cạnh \[AB\] là
Quảng cáo
Trả lời:

Hướng dẫn giải Đáp án đúng là: A Áp dụng định lí Pythagore cho \(\Delta ABC\) vuông tại \(B\), ta có: \(A{C^2} = A{B^2} + B{C^2}\). Suy ra \(A{B^2} = A{C^2} - B{C^2} = {13^2} - {12^2} = 25.\) Do đó \(AB = \sqrt {25} = 5{\rm{\;(cm)}}{\rm{.}}\) |
|
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Hình chóp tam giác đều \(S.ABC\) có các mặt bên là tam giác đều với cạnh dài 5 cm nên mặt đáy \(ABC\) cũng là tam giác đều có cạnh là 5 cm. Kẻ \(CM \bot AB,\) khi đó \(\Delta ABC\) đều có đường cao \(CM\) đồng thời là đường trung tuyến, nên \(M\) là trung điểm của \(AB\), suy ra \(MB = \frac{1}{2}AB = \frac{1}{2} \cdot 5 = 2,5{\rm{\;(cm)}}{\rm{.}}\) |
|
Xét \(\Delta MBC\) vuông tại \(M,\) theo định lí Pythagore, ta có: \(B{C^2} = M{B^2} + M{C^2}\)
Suy ra \(M{C^2} = B{C^2} - M{B^2} = {5^2} - 2,{5^2} = 18,75 = \frac{{75}}{4}.\)
Do đó \(MC = \sqrt {\frac{{75}}{4}} = \sqrt {\frac{{{5^2} \cdot {{\left( {\sqrt 3 } \right)}^2}}}{{{2^2}}}} = \sqrt {{{\left( {\frac{{5\sqrt 3 }}{2}} \right)}^2}} = \frac{{5\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\)
Diện tích mặt đáy \(ABC\) là: \(S = \frac{1}{2}MC \cdot AB = \frac{1}{2} \cdot \frac{{5\sqrt 3 }}{2} \cdot 5 = \frac{{25\sqrt 3 }}{4}{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Thể tích của hình chóp tam giác đều đã cho là: \(V = \frac{1}{3} \cdot \frac{{25\sqrt 3 }}{4} \cdot 4 = \frac{{25\sqrt 3 }}{3}{\rm{\;(c}}{{\rm{m}}^3}{\rm{)}}{\rm{.}}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.