Câu hỏi:

20/09/2025 17 Lưu

Cho \(A = {a^3} - {b^3} + 5ab + 5{a^2} + 5{b^2}.\)

a) \(A = \left( {{a^2} - ab + {b^2}} \right)\left( {a - b + 5} \right).\)

b) Nếu \(a - b = - 5\) thì giá trị biểu thức \(A\) bằng \(0.\)

c) Nếu \(a - b = 10\) thì \(A\cancel{ \vdots }5.\)

d) Nếu \({a^2} + {b^2} = - ab\) thì giá trị của biểu thức \(A\) bằng \(1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:               a) Sai.             b) Đúng.         c) Sai.             d) Sai.

Ta c\(A = \left( {{a^3} - {b^3}} \right) + \left( {5ab + 5{a^2} + 5{b^2}} \right)\)

\( = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) + 5\left( {{a^2} + ab + {b^2}} \right)\)

\( = \left( {{a^2} + ab + {b^2}} \right)\left( {a - b + 5} \right)\).

Do đó ý a) sai.

Với \(a - b = - 5\) ta có: \(A = \left( {{a^2} + ab + {b^2}} \right)\left( {5 - 5} \right) = 0.\) Do đó ý b) đúng.

Với \(a - b = 10\) ta có: \(A = \left( {{a^2} + ab + {b^2}} \right)\left( {10 - 5} \right) = 5\left( {{a^2} + ab + {b^2}} \right) \vdots 5.\) Do đó ý c) sai.

\({a^2} + {b^2} = - ab\) nên \({a^2} + ab + {b^2} = 0.\)

Với \({a^2} + ab + {b^2} = 0\) ta có: \(A = 0\left( {a - b + 5} \right) = 0.\) Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.         b) Đúng.         c) Sai.             d) Đúng.

Thể tích của bể bơi thứ nhất là: \(1,4 \cdot x \cdot y = 1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý a) đúng.

Diện tích đáy của bể bơi thứ nhất là: \(x \cdot y = xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Mà diện tích đáy của bê bơi thứ hai gấp 3 lần diện tích đáy của bể bơi thứ nhất.

Như vậy, diện tích đáy của bể bơi thứ hai là: \(3xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý b) đúng.

Thể tích của bể bơi thứ hai là: \(1,6 \cdot 3xy = 4,8xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

\(4,8 < 5\) nên \(4,8xy < 5xy\).

Như vậy, thể tích của bể bơi thứ hai nhỏ hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý c) sai.

Tổng thể tích hai bể bơi là: \(4,8xy + 1,4xy = 6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

Thể tích nước cần bơm đầy hai bể bơi chính bằng tổng thể tích của của hai bể bơi và bằng \(6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý d) đúng.

Lời giải

Hướng dẫn giải

Đáp án:     a) Sai.        b) Đúng.    c) Đúng.     d) Sai.

a) Công thức tính thể tích hình chóp tứ giác đều: \(V = \frac{1}{3} \cdot S \cdot h.\)

Trong đó \(V\) là thể tích, \(S\) là diện tích đáy, \(h\) là chiều cao của hình chóp tứ giác đều). Do đó ý a) sai.

Chiều cao của mỗi hình chóp tứ giác đều là: \[30:2 = 15{\rm{ (cm)}}.\]Do đó ý b) đúng.

Thể tích của lòng đèn quả trám là: \(V = 2 \cdot \left( {\frac{1}{3} \cdot 20 \cdot 20 \cdot 15} \right) = 4\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\). Do đó ý c) đúng.

Bạn Như muốn làm 50 cái lòng đèn hình quả trám này cần phải chuẩn bị số mét thanh tre là:

\[50 \cdot \,\left( {20 \cdot 4 + 32 \cdot 8} \right) = 16\,\,800 (cm) = 168\,\,(m)\].

Vậy bạn Như muốn làm 50 cái lòng đèn hình quả trám này cần phải chuẩn bị 168 mét thanh tre.

 Do đó ý d) sai.