Câu hỏi:

20/09/2025 97 Lưu

Cho tam giác nhọn \[ABC\] \[AB < BC.\] Từ trung điểm \(M\) của cạnh \(AB\) kẻ đường thẳng song song với \(BC\) cắt cạnh \(AC\) tại \(N.\) Trên cạnh \(BC\) lấy điểm \(D\) sao cho \(BD = MN.\) Kẻ đường cao \[AH\left( {H \in BC} \right)\] của tam giác \[ABC\].

a) Tứ giác \(BMND\)là hình bình hành.                  

b) Tam giác \(AMH\) cân tại \(A\).

c) \(\widehat {AMN} = \frac{2}{3}\widehat {HMN}.\)    

d) Tứ giác \(DHMN\) là hình thang cân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:     a) Đúng.     b) Sai.        c) Sai.         d) Đúng.

a) Tứ giác \(BMND\)là hình bình hành.            (ảnh 1)

Tứ giác \(BMND\) có: \[MN\parallel BD{\rm{ }}\left( {MN\parallel BC} \right)\]; \[MN = BD\] (gt).

Do đó, tứ giác \(BMND\)là hình bình hành. Do đó ý a) là đúng.

Vì \(\Delta {\rm{ }}ABH\) vuông tại \(H\,\,\left( {AH \bot BC} \right)\) có \(HM\) là trung tuyến nên \(HM = \frac{1}{2}AB\).

\(MA = \frac{1}{2}AB\) suy ra \(MA = HM\).

Vậy \(\Delta {\rm{ }}AMH\) cân tại \[M\]. Do đó ý b) sai.

Tứ giác \(DHMN\)\[MN\parallel DH{\rm{ }}\left( {MN\parallel BC} \right)\] nên tứ giác \(DHMN\) là hình thang.          \(\left( 1 \right)\)

Ta có \(AH \bot BC\); \[MN\parallel BC\] nên \(AH \bot MN\).

Vì \(\Delta {\rm{ }}AMH\) cân tại \[M\]\(AH \bot MN\) nên \(MN\) là phân giác của \(\Delta {\rm{ }}AMH\).

Do đó \(\widehat {AMN} = \widehat {HMN}.\) Do đó ý c) sai.

Tứ giác \(BMND\)là hình bình hành nên \[ND\parallel MB\].

Do đó \(\widehat {AMN} = \widehat {DNM}\)          (so le trong) nên \(\widehat {HMN} = \widehat {DNM}\). \(\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra tứ giác \(DHMN\) là hình thang cân. Do đó ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 200.

Tứ giác \(ABCD\) có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \).

Suy ra \[\widehat A + \widehat B = 360^\circ - \widehat C - \widehat D = 360^\circ - 50^\circ - 60^\circ = 250^\circ .\]

Ta có \(\widehat A:\widehat B = 3:2\) nên \[\frac{{\widehat A}}{{\widehat B}} = \frac{3}{2}\] hay \[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2}\].

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2} = \frac{{\widehat A + \widehat B}}{{3 + 2}} = \frac{{250^\circ }}{5} = 50^\circ .\]

Suy ra \[\widehat A = 3 \cdot 50^\circ = 150^\circ \,;\,\,\widehat B = 2 \cdot 50^\circ = 100^\circ .\]

Do đó \(2\widehat A - \widehat B = 2 \cdot 150^\circ - 100^\circ = 200^\circ .\)

Câu 2

Cho biểu thức \(A = \left( {\frac{{a + 2}}{{a + 1}} - \frac{{a - 2}}{{a - 1}}} \right).\frac{{a + 1}}{a}\)\(B = \frac{3}{{{a^2} - 1}}\) với \(a \ne 0\,;\,\,a \ne 1\,;\,\,a \ne - 1\). Tìm giá trị của \(a\) để \(A = 2B\). (Kết quả ghi dưới dạng số thập phân)

Lời giải

Hướng dẫn giải

Đáp án: \(6\).

Với \(x \ne 3\,;\,\,x \ne - 3\), ta có:

\(B = \left( {\frac{{2x - 1}}{{x + 3}} - \frac{x}{{3 - x}} - \frac{{3 - 10x}}{{{x^2} - 9}}} \right):\frac{{x + 2}}{{x - 3}}\)

\( = \left[ {\frac{{\left( {2x - 1} \right)\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} + \frac{{x\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} - \frac{{3 - 10x}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}} \right] \cdot \frac{{x - 3}}{{x + 2}}\)

\( = \frac{{2{x^2} - 7x + 3 + {x^2} + 3x - 3 + 10x}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} \cdot \frac{{x - 3}}{{x + 2}}\)

\( = \frac{{3{x^2} + 6x}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} \cdot \frac{{x - 3}}{{x + 2}}\)

\( = \frac{{3x\left( {x + 2} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} \cdot \frac{{x - 3}}{{x + 2}} = \frac{{3x}}{{x + 3}}\).

Ta có: \(B = \frac{{3x}}{{x + 3}} = \frac{{3x + 9 - 9}}{{x + 3}} = \frac{{3\left( {x + 3} \right)}}{{x + 3}} - \frac{9}{{x + 3}} = 3 - \frac{9}{{x + 3}}\).

Để \(B\) nguyên thì \(\frac{9}{{x + 3}}\) nhận giá trị nguyên.

Suy ra \(x + 3\) là ước của \(9\).

Mà Ư\(\left( 9 \right) = \left\{ { - 9\,;\,\, - 3\,;\,\, - 1\,;\,\,1\,;\,\,3\,;\,\,9} \right\}\).

Ta có bảng sau:

\(x + 3\)

\( - 9\)

\( - 3\)

\( - 1\)

\(1\)

\(3\)

\(9\)

\(x\)

\( - 12\) (TM)

\( - 6\) (TM)

\( - 4\) (TM)

\( - 2\) (TM)

\(0\) (TM)

\(6\) (TM)

Nhận thấy các giá trị \(x\) tìm được đều thỏa mãn.

Do đó, có 6 giá trị nguyên của \(x\) thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP