Cho \(\Delta ABC\) cân tại \(A\) như hình vẽ dưới đây. Hỏi tỉ số \(\frac{{{S_{ABH}}}}{{{S_{BHC}}}}\) bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)

Cho \(\Delta ABC\) cân tại \(A\) như hình vẽ dưới đây. Hỏi tỉ số \(\frac{{{S_{ABH}}}}{{{S_{BHC}}}}\) bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: \(1,5\).
Ta có: \(AC = AH + HC = 3 + 2 = 5{\rm{ }}\left( {{\rm{cm}}} \right)\).
Vì tam giác \(ABC\) cân tại \(A\) nên ta có \(AB = AC = 5{\rm{ cm}}\).• Áp dụng định lí Pythagore vào tam giác \(BHA\), ta có: \(B{H^2} + H{A^2} = A{B^2}\).
Suy ra \(B{H^2} = A{B^2} - H{A^2}\)\( = {5^2} - {3^2} = 16\) nên \(BH = 4\) cm.
• Diện tích tam giác \(ABH\) là: \(\frac{1}{2} \cdot 4 \cdot 3 = 6{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Diện tích tam giác \(BHC\) là: \(\frac{1}{2} \cdot 4 \cdot 2 = 4{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Do đó, ta có: \(\frac{{{S_{ABH}}}}{{{S_{BHC}}}} = \frac{6}{4} = \frac{3}{2} = 1,5\).
Vậy \(\frac{{{S_{ABH}}}}{{{S_{BHC}}}} = 1,5\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Tứ giác \(ABCD\) có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \).
Suy ra \[\widehat A + \widehat B = 360^\circ - \widehat C - \widehat D = 360^\circ - 50^\circ - 60^\circ = 250^\circ .\]
Ta có \(\widehat A:\widehat B = 3:2\) nên \[\frac{{\widehat A}}{{\widehat B}} = \frac{3}{2}\] hay \[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2} = \frac{{\widehat A + \widehat B}}{{3 + 2}} = \frac{{250^\circ }}{5} = 50^\circ .\]
Suy ra \[\widehat A = 3 \cdot 50^\circ = 150^\circ \,;\,\,\widehat B = 2 \cdot 50^\circ = 100^\circ .\]
Do đó \(2\widehat A - \widehat B = 2 \cdot 150^\circ - 100^\circ = 200^\circ .\)
Lời giải
Hướng dẫn giải
Đáp án: a) Sai. b) Đúng. c) Đúng. d) Sai.
⦁ a) Công thức tính thể tích hình chóp tứ giác đều: \(V = \frac{1}{3} \cdot S \cdot h.\)
Trong đó \(V\) là thể tích, \(S\) là diện tích đáy, \(h\) là chiều cao của hình chóp tứ giác đều). Do đó ý a) sai.
⦁ Chiều cao của mỗi hình chóp tứ giác đều là: \[30:2 = 15{\rm{ (cm)}}.\]Do đó ý b) đúng.
⦁ Thể tích của lòng đèn quả trám là: \(V = 2 \cdot \left( {\frac{1}{3} \cdot 20 \cdot 20 \cdot 15} \right) = 4\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\). Do đó ý c) đúng.
⦁ Bạn Như muốn làm 50 cái lòng đèn hình quả trám này cần phải chuẩn bị số mét thanh tre là:
\[50 \cdot \,\left( {20 \cdot 4 + 32 \cdot 8} \right) = 16\,\,800 (cm) = 168\,\,(m)\].
Vậy bạn Như muốn làm 50 cái lòng đèn hình quả trám này cần phải chuẩn bị 168 mét thanh tre.
Do đó ý d) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

