Biểu đồ đoạn thẳng ở hình bên dưới thống kê số lượng gia cầm ở TP. HCM và Kon Tum qua các năm 2015, 2018, 2019, 2020. (Nguồn: Niêm giám thống kê năm 2021).

a) Hãy hoàn thành biểu đồ cột kép ở hình bên dưới để nhận được biểu đồ biểu diễn dữ liệu trong biểu đồ đoạn thẳng ở hình trên.

b) TP. HCM và Kon Tum trong năm 2020 lượng gia cầm ở đâu nhiều nhất? Nhiều nhất là bao nhiêu nghìn con?
c) Một bài báo đã nêu ra nhận định “Tổng số lượng gia cầm ở Kon Tum trong năm \[2015,\]\[2018,{\rm{ }}2019,{\rm{ }}2020\] là \[2023\] nghìn con và so với năm \[2018\] số lượng gia cầm ở TP. HCM tăng \(80\% \) so với số lượng gia cầm ở Kon Tum”. Em hãy cho biết nhận định trên bài báo có chính xác không?
d) Em hãy đề xuất một vài giải pháp để tăng số lượng gia cầm ở Kon Tum trong những năm tới để đạt hiệu quả trong chăn nuôi.
Biểu đồ đoạn thẳng ở hình bên dưới thống kê số lượng gia cầm ở TP. HCM và Kon Tum qua các năm 2015, 2018, 2019, 2020. (Nguồn: Niêm giám thống kê năm 2021).
a) Hãy hoàn thành biểu đồ cột kép ở hình bên dưới để nhận được biểu đồ biểu diễn dữ liệu trong biểu đồ đoạn thẳng ở hình trên.
b) TP. HCM và Kon Tum trong năm 2020 lượng gia cầm ở đâu nhiều nhất? Nhiều nhất là bao nhiêu nghìn con?
c) Một bài báo đã nêu ra nhận định “Tổng số lượng gia cầm ở Kon Tum trong năm \[2015,\]\[2018,{\rm{ }}2019,{\rm{ }}2020\] là \[2023\] nghìn con và so với năm \[2018\] số lượng gia cầm ở TP. HCM tăng \(80\% \) so với số lượng gia cầm ở Kon Tum”. Em hãy cho biết nhận định trên bài báo có chính xác không?
d) Em hãy đề xuất một vài giải pháp để tăng số lượng gia cầm ở Kon Tum trong những năm tới để đạt hiệu quả trong chăn nuôi.
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Ta hoàn thành được biểu đồ cột kép biểu diễn dữ liệu trong biểu đồ đoạn thẳng như sau:
b) Trong năm 2020 lượng gia cầm ở Kon Tum nhiều nhất, là 1698 nghìn con.
c) Tổng số lượng gia cầm ở Kon Tum trong năm \[2015,\]\[2018,{\rm{ }}2019,{\rm{ }}2020\] là:
\(853 + 1\,\,431 + 1\,\,608 + 1\,\,698 = 5\,\,590\) (nghìn con).
Trong năm 2018, số lượng gia cầm ở TP. HCM \[(375\] nghìn con) ít hơn so với số lượng gia cầm ở Kon Tum \[(1{\rm{ }}431\] nghìn con) nên nhận định trên bài báo không chính xác.
d) Một vài giải pháp để tăng số lượng gia cầm ở Kon Tum trong những năm tới để đạt hiệu quả trong chăn nuôi:
⦁ Đẩy mạnh tuyên truyền, vận động nhân dân chăm sóc tốt đàn gia cầm hiện có;
⦁ Mạnh dạn đầu tư phát triển quy mô chăn nuôi, đa dạng các loại gia cầm;
⦁ Chú trọng việc lai tạo và cải thiện giống gia cầm địa phương;
⦁ Thường xuyên thực hiện vệ sinh tiêu độc khử trùng; …
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)
Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)
\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)
\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)
\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)
Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)
Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)
Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).
Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:
\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]
Lời giải
a) \[A = {\left( {{x^2} - 2} \right)^2} + 2{\left( {x - 1} \right)^2} + \left( {2 - {x^2}} \right)\left( {2 + {x^2}} \right)\]
\[ = {x^4} - 4{x^2} + 4 + 2\left( {{x^2} - 2x + 1} \right) + \left( {4 - {x^4}} \right)\]
\[ = {x^4} - 4{x^2} + 4 + 2{x^2} - 4x + 2 + 4 - {x^4}\]
\[ = - 2{x^2} - 4x + 10\]\[ = - 2\left( {{x^2} + 2x - 5} \right)\]
\[ = - 2\left( {{x^2} + 2x + 1 - 6} \right)\]\[ = - 2{\left( {x + 1} \right)^2} + 12.\]
Với mọi \(x\), ta luôn có \[{\left( {x + 1} \right)^2} \ge 0,\] nên \[ - 2{\left( {x + 1} \right)^2} \le 0\], suy ra \[ - 2{\left( {x + 1} \right)^2} + 12 \le 12\]
Do đó \(A \le 12.\) Dấu xảy ra khi \[x = - 1\].
Vậy giá trị lớn nhất của biểu thức \(A\) là \(12\) khi \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.