Câu hỏi:

20/09/2025 37 Lưu

Tìm giá trị nhỏ nhất của các biểu thức sau:

d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\)

\( = \left( {x - 3} \right)\left( {x - 5} \right)\left[ {\left( {{x^2} - 8x + 16} \right) + 1} \right]\)

\( = \left( {x - 3} \right)\left( {x - 5} \right)\left[ {{{\left( {x - 4} \right)}^2} + 1} \right]\)

Đặt \(t = x - 4\) suy ra \(x - 3 = t + 1\)\(x - 5 = t - 1\).

Khi đó, ta có:

\(D = \left( {t + 1} \right)\left( {t - 1} \right)\left( {{t^2} + 1} \right)\)\( = \left( {{t^2} - 1} \right)\left( {{t^2} + 1} \right) = {t^4} - 1.\)

\({t^4} \ge 0\) với mọi \(t\) nên \(D \ge - 1\).

Dấu xảy ra khi \(t = 0\) hay \(x = 4\).

Vậy giá trị nhỏ nhất của biểu thức \(D\)\( - 1\) khi \(x = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

b) Ta có: \(B = \frac{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}},\) xét phân thức nghịch đảo của phân thức \(B\) là:

\(\frac{1}{B} = \frac{{{x^{26}} + {x^{24}} + {x^{22}} + ... + {x^2} + 1}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{26}} + {x^{22}} + {x^{18}} + ... + {x^6} + {x^2}} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{{x^2}\left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right) + \left( {{x^{24}} + {x^{20}} + ... + {x^4} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}}\)

\( = \frac{{\left( {{x^{24}} + {x^{20}} + ... + 1} \right)\left( {{x^2} + 1} \right)}}{{{x^{24}} + {x^{20}} + {x^{16}} + ... + {x^4} + 1}} = {x^2} + 1.\)

Vậy \(B = \frac{1}{{{x^2} + 1}}.\)

Lời giải

Hướng dẫn giải

a) Diện tích đáy hình vuông của chiếc lều là:

Thể tích không khí bên trong chiếc lều là:

 

b) Diện tích xung quanh của chiếc lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:

\(S = 9 + 19,08 = 28,08\) (m2).

Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.

Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP