Tìm giá trị nhỏ nhất của các biểu thức sau:
d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\).
d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\).
Quảng cáo
Trả lời:

d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\)
\( = \left( {x - 3} \right)\left( {x - 5} \right)\left[ {\left( {{x^2} - 8x + 16} \right) + 1} \right]\)
\( = \left( {x - 3} \right)\left( {x - 5} \right)\left[ {{{\left( {x - 4} \right)}^2} + 1} \right]\)
Đặt \(t = x - 4\) suy ra \(x - 3 = t + 1\) và \(x - 5 = t - 1\).
Khi đó, ta có:
\(D = \left( {t + 1} \right)\left( {t - 1} \right)\left( {{t^2} + 1} \right)\)\( = \left( {{t^2} - 1} \right)\left( {{t^2} + 1} \right) = {t^4} - 1.\)
Vì \({t^4} \ge 0\) với mọi \(t\) nên \(D \ge - 1\).
Dấu xảy ra khi \(t = 0\) hay \(x = 4\).
Vậy giá trị nhỏ nhất của biểu thức \(D\) là \( - 1\) khi \(x = 4\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)
Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)
\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)
\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)
\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)
Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)
Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)
Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).
Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:
\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]
Lời giải
a) \[A = {\left( {{x^2} - 2} \right)^2} + 2{\left( {x - 1} \right)^2} + \left( {2 - {x^2}} \right)\left( {2 + {x^2}} \right)\]
\[ = {x^4} - 4{x^2} + 4 + 2\left( {{x^2} - 2x + 1} \right) + \left( {4 - {x^4}} \right)\]
\[ = {x^4} - 4{x^2} + 4 + 2{x^2} - 4x + 2 + 4 - {x^4}\]
\[ = - 2{x^2} - 4x + 10\]\[ = - 2\left( {{x^2} + 2x - 5} \right)\]
\[ = - 2\left( {{x^2} + 2x + 1 - 6} \right)\]\[ = - 2{\left( {x + 1} \right)^2} + 12.\]
Với mọi \(x\), ta luôn có \[{\left( {x + 1} \right)^2} \ge 0,\] nên \[ - 2{\left( {x + 1} \right)^2} \le 0\], suy ra \[ - 2{\left( {x + 1} \right)^2} + 12 \le 12\]
Do đó \(A \le 12.\) Dấu xảy ra khi \[x = - 1\].
Vậy giá trị lớn nhất của biểu thức \(A\) là \(12\) khi \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.