Biểu đồ đoạn thẳng dưới đây biểu diễn sản lượng thủy sản của nước ta qua các năm 2010; 2014; 2016; 2018; 2020 (đơn vị: nghìn tấn).

Hỏi sản lượng thủy sản của nước ta năm 2020 chiếm bao nhiêu phần trăm tổng sản lượng thủy sản của nước ta qua các năm? (Kết quả làm tròn đến hàng phần mười)
Biểu đồ đoạn thẳng dưới đây biểu diễn sản lượng thủy sản của nước ta qua các năm 2010; 2014; 2016; 2018; 2020 (đơn vị: nghìn tấn).

Hỏi sản lượng thủy sản của nước ta năm 2020 chiếm bao nhiêu phần trăm tổng sản lượng thủy sản của nước ta qua các năm? (Kết quả làm tròn đến hàng phần mười)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: \(24,6\).
Tổng sản lượng thủy sản nước ta qua các năm là:
\(5{\rm{ }}204,5 + 6{\rm{ }}420,5 + 6{\rm{ }}924,4 + 7{\rm{ }}885,9 + 8{\rm{ }}635,7 = 35{\rm{ }}071\) (nghìn tấn)
Sản lượng thủy sản của nước ta năm 2020 so với tổng sản lượng thủy sản của nước ta qua các năm chiếm số phần trăm là: \(\frac{{8{\rm{ }}635,7}}{{35{\rm{ }}071}}.100\% \approx 24,6\% \).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 130.
Theo đề bài \(\widehat A - 2\widehat B = 30^\circ \) nên \(\widehat A = 2\widehat B + 30^\circ \).
Vì \[ABCD\] là hình thang cân nên \(\widehat A + \widehat B = 180^\circ \) nên \(2\widehat B + 30^\circ + \widehat B = 180^\circ \).
Suy ra \(3\widehat B = 150^\circ \) hay \(\widehat B = 50^\circ \) nên \(\widehat A = 130^\circ .\)
Do đó \(\widehat A = \widehat D = 130^\circ .\)
Vậy số đo góc tại đỉnh \[D\] của hình thang là \(130^\circ .\)
Câu 2
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Lời giải
Đáp án: a) Sai. b) Đúng. c) Sai. d) Sai.

⦁ Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\). Do đó ý a) sai.
⦁ Xét tứ giác \(AMHN\) có \(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\)
Do đó tứ giác \[AMHN\] là hình chữ nhật. Do đó ý b) đúng.
⦁ Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)
Suy ra \(\widehat {OMH} = \widehat {OHM}\) mà \(\widehat {HKC} = \widehat {OHM}\) (so le trong) nên \(\widehat {HKC} = \widehat {OMH}\).
Mặt khác \(\widehat {HKC} = \widehat {HAC}\) (chứng minh ý a) nên \(\widehat {OMH} = \widehat {HKC}\).
Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân. Do đó ý c) sai.
⦁ Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên
\(AD = \frac{2}{3}AI\) mà \(AI = \frac{1}{2}AK\).
Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\). Do đó ý d) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
