Chứng minh các biểu thức sau không phụ thuộc vào giá trị của biến:
a) \(A = \left( {6x - 4} \right)\left( {2x + 1} \right) - 3x\left( {4x - 3} \right) - 7x - 6\).
Quảng cáo
Trả lời:

a) \[A = \left( {6x - 4} \right)\left( {2x + 1} \right) - 3x\left( {4x - 3} \right) - 7x - 6\]
\[ = 12{x^2} + 6x - 8x - 4 - 12{x^2} + 9x - 7x - 6\]
\[ = \left( {12{x^2} - 12{x^2}} \right) + \left( {6x - 8x + 9x - 7x} \right) + \left( { - 4 - 6} \right)\]
\[ = - 10\].
Vậy biểu thức \[A\] không phụ vào giá trị của biến.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
e) \(E = {\left( {x - 1} \right)^3} - \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 3\left( {1 - x} \right)x\)
\[ = {x^3} - 3{x^2} + 3x - 1 - \left( {{x^3} - 1} \right) - \left( {3 - 3x} \right)x\]
\( = {x^3} - 3{x^2} + 3x - 1 - {x^3} + 1 - 3x + 3{x^2}\)
\( = \left( {{x^3} - {x^3}} \right) + \left( { - 3{x^2} + 3{x^2}} \right) + \left( {3x - 3x} \right) + \left( { - 1 + 1} \right)\)
\( = 0\).
Lời giải
c) \(C = {\left( {x + 2} \right)^3} + {\left( {x - 2} \right)^3} - 2x\left( {{x^2} + 12} \right)\)
\[ = {x^3} + 6{x^2} + 12x + 8 + {x^3} - 6{x^2} + 12x - 8 - 2{x^3} - 24x\]
\[ = \left( {{x^3} + {x^3} - 2{x^3}} \right) + \left( {6{x^2} - 6{x^2}} \right) + \left( {12x + 12x - 24x} \right) + \left( {8 - 8} \right)\]
\[ = 0\].
Vậy biểu thức \(C\) không phụ thuộc vào biến.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.