Cho đa thức \(A = 3{x^2}y - 2x{y^2} - 4xy + 1.\)
Đa thức \(B\) và \(M\) thỏa mãn
a) Với \[x = - 1\,;\,\,y = 1\] thì giá trị của biểu thức \(A\) bằng 9.
b) Đa thức \(B\) sau khi thu gọn có 5 hạng tử.
c) Đa thức \(M\) có bậc là 2.
d) Tổng của hai đa thức \(B\) và \(M\) có hạng tử tự do là 1.
Cho đa thức \(A = 3{x^2}y - 2x{y^2} - 4xy + 1.\)
Đa thức \(B\) và \(M\) thỏa mãn
a) Với \[x = - 1\,;\,\,y = 1\] thì giá trị của biểu thức \(A\) bằng 9.
b) Đa thức \(B\) sau khi thu gọn có 5 hạng tử.
c) Đa thức \(M\) có bậc là 2.
d) Tổng của hai đa thức \(B\) và \(M\) có hạng tử tự do là 1.
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: a) Đ. b) Đ. c) S. d) S.
⦁ Thay \[x = - 1\,;\,\,y = 1\] vào biểu thức \(A\), ta có:
\(A = 3 \cdot {\left( { - 1} \right)^2} \cdot 1 - 2 \cdot \left( { - 1} \right) \cdot {1^2} - 4 \cdot \left( { - 1} \right) \cdot 1 + 1 = 3 + 2 + 4 = 9.\)
Vậy với \[x = - 1\,;\,\,y = 1\] thì \(A = 9\). Do đó ý a) đúng.
⦁ Ta có \(B - A = - 2{x^3}y + 7{x^2}y + 3xy.\)
Suy ra \(B = - 2{x^3}y + 7{x^2}y + 3xy + A\)
\( = - 2{x^3}y + 7{x^2}y + 3xy + \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)
\( = - 2{x^3}y + 7{x^2}y + 3xy + 3{x^2}y - 2x{y^2} - 4xy + 1\)
\( = - 2{x^3}y + \left( {7{x^2}y + 3{x^2}y} \right) - 2x{y^2} + \left( {3xy - 4xy} \right) + 1\)
\( = - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1\).
Khi đó, đa thức \(B\) sau khi thu gọn có 5 hạng tử. Do đó ý b) đúng.
⦁ Ta có \(A + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\).
Suy ra \(M = 3{x^2}{y^2} - 5{x^2}y + 8xy - A\)
\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)
\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - 3{x^2}y + 2x{y^2} + 4xy - 1\)
\( = 3{x^2}{y^2} - \left( {5{x^2}y + 3{x^2}y} \right) + 2x{y^2} + \left( {8xy + 4xy} \right) - 1\)
\( = 3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1\).
Khi đó, đa thức \(M\) có bậc là 4. Do đó ý c) sai.
⦁ Tổng của hai đa thức \(B\) và \(M\) là:
\[B + M = \left( { - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1} \right) + \left( {3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1} \right)\]
\[ = - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1 + 3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1\]
\[ = - 2{x^3}y + 3{x^2}{y^2} + \left( {10{x^2}y - 8{x^2}y} \right) + \left( {2x{y^2} - 2x{y^2}} \right) + \left( {12xy - xy} \right) + \left( {1 - 1} \right)\]
\[ = - 2{x^3}y + 3{x^2}{y^2} + 2{x^2}y + 11xy\].
Như vậy, tổng của hai đa thức \(B\) và \(M\) có hạng tử tự do là 0. Do đó ý d) sai.
Vậy: a) Đ. b) Đ. c) S. d) S.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 4.
Ta có
\[ = {\left[ {\left( {3x + 1} \right) - \left( {3x - 1} \right)} \right]^2}\]
\[ = {\left( {3x + 1 - 3x + 1} \right)^2} = {2^2} = 4\].
Vậy giá trị của biểu thức \(A\) bằng 4.
Lời giải
Hướng dẫn giải
Đáp số: 2.
Ta có \(\frac{{x + 1}}{{x - 2}} + \frac{{x - 2}}{{x + 2}} + \frac{{x - 14}}{{{x^2} - 4}}\)
\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{{{\left( {x - 2} \right)}^2}}}{{x + 2}} + \frac{{x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right) + {{\left( {x - 2} \right)}^2} + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{{x^2} + 3x + 2 + {x^2} - 4x + 4 + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{2{x^2} - 8}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{2\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = 2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.