Cho hai đa thức:
\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).
a) Đa thức \(A\) có bậc là 2.
b) Đa thức \(B\) không chia hết cho 6.
c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).
d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.
Cho hai đa thức:
\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).
a) Đa thức \(A\) có bậc là 2.
b) Đa thức \(B\) không chia hết cho 6.
c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).
d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: a) S. b) S. c) Đ. d) S.
⦁ Đa thức \(A\) có bậc là 3. Do đó ý a) sai.
⦁ Ta có \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\)
\[ = 3y \cdot 3y - 3y \cdot x - 2{x^2}{y^2}:\left( {\frac{2}{3}xy} \right) - 6x{y^3}:\left( {\frac{2}{3}xy} \right) + 4xy:\left( {\frac{2}{3}xy} \right)\]
\[ = 9{y^2} - 3xy - 3xy - 9{y^2} + 6\]
\[ = \left( {9{y^2} - 9{y^2}} \right) + \left( { - 3xy - 3xy} \right) + 6\]
\[ = - 6xy + 6 = 6\left( { - xy + 1} \right).\]
Vì \(6\left( { - xy + 1} \right)\, \vdots \,\,6\) với mọi giá trị nguyên của \(x,y\) nên \(B\) luôn chia hết cho 6 với mọi giá trị nguyên của biến \(x,y.\) Do đó ý b) sai.
⦁ Thay \(x = \frac{1}{2};\) \(y = 4\) vào biểu thức \(A = - 6xy + 6\) đã thu gọn được ở câu a, ta được:
\(A = - 6 \cdot \frac{1}{2} \cdot 4 + 6 = - 12 + 6 = - 6.\)
Vậy \(A = - 6\) khi \(x = \frac{1}{2};\) \(y = 4.\) Do đó ý c) sai.
⦁ Tổng của hai đa thức \(A\) và \(B\) là:
\[A + B = \left( {{x^2}y + 5xy - 1} \right) + \left( { - 6xy + 6} \right)\]
\[ = {x^2}y + 5xy - 1 - 6xy + 6\]
\[ = {x^2}y + \left( {5xy - 6xy} \right) + \left( {6 - 1} \right)\]
\[ = {x^2}y - xy + 5.\]
Như vậy, tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 5. Do đó ý d) sai.
Vậy: a) Đ. b) S. c) S. d) S.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 30.
Xét tứ giác \(ABCD\) có \(\widehat {BAD} + \widehat B + \widehat {BCD} + \widehat D = 360^\circ \).
Suy ra \(\frac{{7x}}{2} + 4x + 135^\circ = 360^\circ \) hay \(\frac{{15x}}{2} = 225^\circ \) nên \(x = 30^\circ .\)
Lời giải
Hướng dẫn giải
Đáp án: 6.
Ta có \[\left( {5{x^5}{y^4}z + \frac{1}{2}{x^4}{y^2}{z^3} - 2x{y^3}{z^2}} \right):\frac{1}{4}x{y^2}z\]
\[ = 5{x^5}{y^4}z:\frac{1}{4}x{y^2}z + \frac{1}{2}{x^4}{y^2}{z^3}:\frac{1}{4}x{y^2}z - 2x{y^3}{z^2}:\frac{1}{4}x{y^2}z\]
\[ = 20{x^4}{y^2} + 2{x^3}{z^2} - 8yz\].
Đa thức \[20{x^4}{y^2} + 2{x^3}{z^2} - 8yz\] có bậc 6 nên bậc của đa thức cần tìm có bậc là 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hình vẽ, biết \[\widehat B + \widehat D = 135^\circ \,,\,\,\widehat {BAD} = \frac{{7x}}{2}\]. Tính số đo góc \[\widehat {{C_1}}\] (đơn vị: độ). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/29-1758432859.png)
![Bộ nam châm xếp hình có dạng hình chóp tam giác đều (như hình ảnh) có độ dài cạnh đáy khoảng 6 cm và mặt bên có đường cao khoảng 7 cm. Tính diện tích xung quanh bộ nam châm xếp hình đó theo đơn vị \[{\rm{c}}{{\rm{m}}^{\rm{2}}}\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/24-1758432821.png)