Câu hỏi:

21/09/2025 50 Lưu

Cho biểu thức \[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\].

 a) Điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\,;\,\,x \ne - \,3.\]

 b) Biểu thức \(K\) sau khi rút gọn là phân thức có tử thức là \(x + 3.\)

 c) Với \(x = - 1\) thì \(K = 2.\)

 d) Có 2 giá trị của \(x\) để biểu thức \(K\) nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:           a) S.         b) Đ.        c) S.         d) Đ.

Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].

Như vậy, điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\]. Do đó ý a) sai.

Với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\], ta có:

\[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\]

\[ = \left[ {\frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \frac{{{x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}} \right] \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1 + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{4x + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{x^2} - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x} = \frac{{x + 3}}{x}.\]

Như vậy, với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] thì \(K = \frac{{x + 3}}{x}.\) Do đó ý b) đúng.

Với \(x = - 1\) (TMĐK), ta có \(K = \frac{{ - 1 + 3}}{{ - 1}} = - 2.\)

Khi đó, với \(x = - 1\) thì \(K = - 2.\) Do đó ý c) sai.

Ta có \(K = \frac{{x + 3}}{x} = 1 + \frac{3}{x}.\)

Để biểu thức \(K\) nhận giá trị nguyên thì \(\frac{3}{x} \in \mathbb{Z}\).

Khi đó, \(x \in \)Ư\[\left( 3 \right) = \left\{ { - 1\,;\,\,\,1\,;\,\, - 3\,;\,\,3} \right\}\]\[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] nên \(x \in \left\{ { - 3\,;\,\,3} \right\}\).

Suy ra để biểu thức \(K\) nhận giá trị nguyên thì \(x \in \left\{ { - 3\,;\,\,3} \right\}\).

Hay có 2 giá trị của \(x\) để biểu thức \(K\) nhận giá trị nguyên. Do đó ý d) đúng.

Vậy:                 a) S.         b) Đ.        c) S.         d) Đ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 30.

Xét tứ giác \(ABCD\) có \(\widehat {BAD} + \widehat B + \widehat {BCD} + \widehat D = 360^\circ \).

Suy ra \(\frac{{7x}}{2} + 4x + 135^\circ = 360^\circ \) hay \(\frac{{15x}}{2} = 225^\circ \) nên \(x = 30^\circ .\)

Lời giải

Hướng dẫn giải

Đáp án: 6.

Ta có \[\left( {5{x^5}{y^4}z + \frac{1}{2}{x^4}{y^2}{z^3} - 2x{y^3}{z^2}} \right):\frac{1}{4}x{y^2}z\]

\[ = 5{x^5}{y^4}z:\frac{1}{4}x{y^2}z + \frac{1}{2}{x^4}{y^2}{z^3}:\frac{1}{4}x{y^2}z - 2x{y^3}{z^2}:\frac{1}{4}x{y^2}z\]

\[ = 20{x^4}{y^2} + 2{x^3}{z^2} - 8yz\].

 Đa thức \[20{x^4}{y^2} + 2{x^3}{z^2} - 8yz\] có bậc 6 nên bậc của đa thức cần tìm có bậc là 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP