Cho biểu thức \[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\].
a) Điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\,;\,\,x \ne - \,3.\]
b) Biểu thức \(K\) sau khi rút gọn là phân thức có tử thức là \(x + 3.\)
c) Với \(x = - 1\) thì \(K = 2.\)
d) Có 2 giá trị của \(x\) để biểu thức \(K\) nhận giá trị nguyên.
Cho biểu thức \[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\].
a) Điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\,;\,\,x \ne - \,3.\]
b) Biểu thức \(K\) sau khi rút gọn là phân thức có tử thức là \(x + 3.\)
c) Với \(x = - 1\) thì \(K = 2.\)
d) Có 2 giá trị của \(x\) để biểu thức \(K\) nhận giá trị nguyên.
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: a) S. b) Đ. c) S. d) Đ.
⦁ Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].
Như vậy, điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\]. Do đó ý a) sai.
⦁ Với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\], ta có:
\[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\]
\[ = \left[ {\frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \frac{{{x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}} \right] \cdot \frac{{x + 3}}{x}\]
\[ = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]
\[ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1 + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]
\[ = \frac{{4x + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]
\[ = \frac{{{x^2} - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x} = \frac{{x + 3}}{x}.\]
Như vậy, với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] thì \(K = \frac{{x + 3}}{x}.\) Do đó ý b) đúng.
⦁ Với \(x = - 1\) (TMĐK), ta có \(K = \frac{{ - 1 + 3}}{{ - 1}} = - 2.\)
Khi đó, với \(x = - 1\) thì \(K = - 2.\) Do đó ý c) sai.
⦁ Ta có \(K = \frac{{x + 3}}{x} = 1 + \frac{3}{x}.\)
Để biểu thức \(K\) nhận giá trị nguyên thì \(\frac{3}{x} \in \mathbb{Z}\).
Khi đó, \(x \in \)Ư\[\left( 3 \right) = \left\{ { - 1\,;\,\,\,1\,;\,\, - 3\,;\,\,3} \right\}\] và \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] nên \(x \in \left\{ { - 3\,;\,\,3} \right\}\).
Suy ra để biểu thức \(K\) nhận giá trị nguyên thì \(x \in \left\{ { - 3\,;\,\,3} \right\}\).
Hay có 2 giá trị của \(x\) để biểu thức \(K\) nhận giá trị nguyên. Do đó ý d) đúng.
Vậy: a) S. b) Đ. c) S. d) Đ.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 4.
Ta có
\[ = {\left[ {\left( {3x + 1} \right) - \left( {3x - 1} \right)} \right]^2}\]
\[ = {\left( {3x + 1 - 3x + 1} \right)^2} = {2^2} = 4\].
Vậy giá trị của biểu thức \(A\) bằng 4.
Lời giải
Hướng dẫn giải
Đáp số: 2.
Ta có \(\frac{{x + 1}}{{x - 2}} + \frac{{x - 2}}{{x + 2}} + \frac{{x - 14}}{{{x^2} - 4}}\)
\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{{{\left( {x - 2} \right)}^2}}}{{x + 2}} + \frac{{x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right) + {{\left( {x - 2} \right)}^2} + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{{x^2} + 3x + 2 + {x^2} - 4x + 4 + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{2{x^2} - 8}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{2\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = 2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.