Câu hỏi:

21/09/2025 13 Lưu

Cho biểu thức \[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\].

 a) Điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\,;\,\,x \ne - \,3.\]

 b) Biểu thức \(K\) sau khi rút gọn là phân thức có tử thức là \(x + 3.\)

 c) Với \(x = - 1\) thì \(K = 2.\)

 d) Có 2 giá trị của \(x\) để biểu thức \(K\) nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:           a) S.         b) Đ.        c) S.         d) Đ.

Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].

Như vậy, điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\]. Do đó ý a) sai.

Với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\], ta có:

\[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\]

\[ = \left[ {\frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \frac{{{x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}} \right] \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1 + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{4x + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{x^2} - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x} = \frac{{x + 3}}{x}.\]

Như vậy, với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] thì \(K = \frac{{x + 3}}{x}.\) Do đó ý b) đúng.

Với \(x = - 1\) (TMĐK), ta có \(K = \frac{{ - 1 + 3}}{{ - 1}} = - 2.\)

Khi đó, với \(x = - 1\) thì \(K = - 2.\) Do đó ý c) sai.

Ta có \(K = \frac{{x + 3}}{x} = 1 + \frac{3}{x}.\)

Để biểu thức \(K\) nhận giá trị nguyên thì \(\frac{3}{x} \in \mathbb{Z}\).

Khi đó, \(x \in \)Ư\[\left( 3 \right) = \left\{ { - 1\,;\,\,\,1\,;\,\, - 3\,;\,\,3} \right\}\]\[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] nên \(x \in \left\{ { - 3\,;\,\,3} \right\}\).

Suy ra để biểu thức \(K\) nhận giá trị nguyên thì \(x \in \left\{ { - 3\,;\,\,3} \right\}\).

Hay có 2 giá trị của \(x\) để biểu thức \(K\) nhận giá trị nguyên. Do đó ý d) đúng.

Vậy:                 a) S.         b) Đ.        c) S.         d) Đ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:           a) S.         b) Đ.        c) Đ.        d) S.

Biểu thức \(M\)đa thức có bậc 24. Do đó ý a) sai.

Thay \(x = 0\,;\,y = - 2\) vào biểu thức \(N\), ta có:

\(N = - 22 \cdot 0 \cdot {\left( { - 2} \right)^3} - 42 \cdot \left( { - 2} \right) - 1 = 0 + 84 - 1 = 83.\)

Vậy với \(x = 0\,;\,y = - 2\) thì \(N = 83\). Do đó ý b) đúng.

Ta có \(M - N = \left( {23{x^{23}}y - 22x{y^{23}} + 21y - 1} \right) - \left( { - 22x{y^3} - 42y - 1} \right)\)

          \( = 23{x^{23}}y - 22x{y^{23}} + 21y - 1 + 22x{y^3} + 42y + 1\)

          \( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + \left( {21y + 42y} \right) + \left( { - 1 + 1} \right)\)

          \( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y\).

Do đó ý c) đúng.

Từ \(M - N - P = 63y + 1\) suy ra

\(P = \left( {M - N} \right) - \left( {63y + 1} \right)\)

\( = \left( {23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y} \right) - \left( {63y + 1} \right)\)

\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y - 63y - 1\)

\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} - 1\).

Như vậy, \(P = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} - 1\). Do đó ý d) sai.

Vậy:                 a) S.         b) Đ.        c) Đ.        d) S.

Câu 2

Cho hai đa thức \(A = {x^2} - 4xy - 4\)\(B = 2{x^2} - 3xy + {y^2} - 4.\)

Đa thức \(M\) và \(P\) thỏa mãn B=A+M;P=x3Myx+yxy3y.

 a) Hạng tử tự do của đa thức \(A\) là \( - 4\).

 b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)

 c) \(M = {x^2} + 7xy + {y^2}.\)

 d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).

Lời giải

Hướng dẫn giải

Đáp án:           a) Đ.        b) S.        c) S.         d) Đ.

Đa thức \(A\) có hạng tử tự do là \( - 4\). Do đó ý a) đúng.

Thay \(x = 1\,;\,\,y = 0\) vào biểu thức \(B\), ta có:

\(B = 2 \cdot {1^2} - 3 \cdot 1 \cdot 0 + {0^2} - 4 = 2 - 4 = - 2.\)

Vậy với \(x = 1\,;\,\,y = 0\) thì \(N = - 2\). Do đó ý b) sai.

Ta có: \(B = A + M\)

Suy ra \(M = B - A\)

\( = 2{x^2} - 3xy + {y^2} - 4 - \left( {{x^2} - 4xy - 4} \right)\)

\( = 2{x^2} - 3xy + {y^2} - 4 - {x^2} + 4xy + 4\)

\( = {x^2} + xy + {y^2}.\)

Như vậy \(M = {x^2} + xy + {y^2}.\) Do đó ý c) sai.

Ta có \[P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right)\]

\( = \left( {x - 3} \right)\left( {{x^2} + xy + {y^2}} \right) - \left( {{x^2}y - 3xy + x{y^2} - 3{y^2}} \right)\)

\[ = x\left( {{x^2} + xy + {y^2}} \right) - 3\left( {{x^2} + xy + {y^2}} \right) - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} + {x^2}y + x{y^2} - 3{x^2} - 3xy - 3{y^2} - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} - 3{x^2}\].

Như vậy, giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến \(y.\) Do đó ý d) đúng.

Vậy:                 a) Đ.        b) S.         c) S.         d) Đ.

Câu 3

Một bể kính hình hộp chữ nhật có hai cạnh đáy là \(60{\rm{ cm}}\)\(30{\rm{ cm}}{\rm{.}}\) Trong bể có một khối đá hình chóp tam giác đều với diện tích đáy là \(270{\rm{ c}}{{\rm{m}}^2}\), chiều cao \(30{\rm{ cm}}{\rm{.}}\) Người ta đổ nước vào bể sao cho nước ngập khối đá và đo được mức nước là \(60{\rm{ cm}}{\rm{.}}\)

Diện tích đáy của bể hình hộp chữ nhật là \(180{\rm{ c}}{{\rm{m}}^{\rm{2}}}\). (ảnh 1) 

 a) Diện tích đáy của bể hình hộp chữ nhật là \(180{\rm{ c}}{{\rm{m}}^{\rm{2}}}\).

 b) Thể tích khối đá hình chóp tam giác đều là: \(2{\rm{ }}700{\rm{ c}}{{\rm{m}}^3}.\)

 c) Thể tích khối nước là \(108{\rm{ }}000{\rm{ c}}{{\rm{m}}^2}\).

 d) Khi lấy khối đá ra thì mực nước của bể cao 56 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP