Đỉnh Fansipan (Lào Cai) cao \(3143{\rm{ m,}}\) là đỉnh núi cao nhất Đông Dương. Trên đỉnh núi, người ta đặt một chóp làm bằng inox có dạng hình chóp tam giác đều dài \(60{\rm{ cm,}}\)chiều cao \(90{\rm{ cm}}\) (như hình vẽ).

a) Tam giác đều \(ABC\) có \(CH\) là đường trung tuyến.
b) Độ dài đường trung tuyến \(CH\) bằng \(30\sqrt 3 {\rm{ cm}}\).
c) Độ dài cạnh \(SH\) nhỏ hơn độ dài cạnh \(CH\).
d) Diện tích xung quanh của hình chóp là \(8635{\rm{ c}}{{\rm{m}}^{\rm{2}}}.\)
Đỉnh Fansipan (Lào Cai) cao \(3143{\rm{ m,}}\) là đỉnh núi cao nhất Đông Dương. Trên đỉnh núi, người ta đặt một chóp làm bằng inox có dạng hình chóp tam giác đều dài \(60{\rm{ cm,}}\)chiều cao \(90{\rm{ cm}}\) (như hình vẽ).
a) Tam giác đều \(ABC\) có \(CH\) là đường trung tuyến.
b) Độ dài đường trung tuyến \(CH\) bằng \(30\sqrt 3 {\rm{ cm}}\).
c) Độ dài cạnh \(SH\) nhỏ hơn độ dài cạnh \(CH\).
d) Diện tích xung quanh của hình chóp là \(8635{\rm{ c}}{{\rm{m}}^{\rm{2}}}.\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: a) Đ. b) Đ. c) S. d) S.
⦁ Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\)
Gọi đường cao của mặt đáy là \(CH\) nên \(CH\) đồng thời là đường trung tuyến của tam giác đều \(ABC.\)
Do đó ý a) đúng.
⦁ Vì \(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)
Áp dụng định lý Pythagore vào \(\Delta BHC\) vuông tại \(H\), ta có:
\(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\)
Suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\). (1)
Gọi \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).
Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)
Áp dụng định lý Pythagore vào \[\Delta SHG\] vuông tại \(G\), ta có:
\(S{H^2} = S{G^2} + H{G^2}\)\( = {90^2} + {30^2} = 9000\)
Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\) (2)
Từ (1) và (2) suy ra độ dài cạnh \(SH\) lớn hơn độ dài cạnh \(CH\). Do đó ý c) sai.
⦁ Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\)
Vậy diện tích xung quanh của hình chóp là \(S = P.d = 90.30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\). Do đó ý d) sai.
Vậy: a) Đ. b) Đ. c) S. d) S.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Cho hai đa thức \(A = {x^2} - 4xy - 4\) và \(B = 2{x^2} - 3xy + {y^2} - 4.\)
Đa thức \(M\) và \(P\) thỏa mãn
a) Hạng tử tự do của đa thức \(A\) là \( - 4\).
b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)
c) \(M = {x^2} + 7xy + {y^2}.\)
d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).
Cho hai đa thức \(A = {x^2} - 4xy - 4\) và \(B = 2{x^2} - 3xy + {y^2} - 4.\)
Đa thức \(M\) và \(P\) thỏa mãn
a) Hạng tử tự do của đa thức \(A\) là \( - 4\).
b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)
c) \(M = {x^2} + 7xy + {y^2}.\)
d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).
Lời giải
Hướng dẫn giải
Đáp án: a) Đ. b) S. c) S. d) Đ.
⦁ Đa thức \(A\) có hạng tử tự do là \( - 4\). Do đó ý a) đúng.
⦁ Thay \(x = 1\,;\,\,y = 0\) vào biểu thức \(B\), ta có:
\(B = 2 \cdot {1^2} - 3 \cdot 1 \cdot 0 + {0^2} - 4 = 2 - 4 = - 2.\)
Vậy với \(x = 1\,;\,\,y = 0\) thì \(N = - 2\). Do đó ý b) sai.
⦁ Ta có: \(B = A + M\)
Suy ra \(M = B - A\)
\( = 2{x^2} - 3xy + {y^2} - 4 - \left( {{x^2} - 4xy - 4} \right)\)
\( = 2{x^2} - 3xy + {y^2} - 4 - {x^2} + 4xy + 4\)
\( = {x^2} + xy + {y^2}.\)
Như vậy \(M = {x^2} + xy + {y^2}.\) Do đó ý c) sai.
⦁ Ta có \[P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right)\]
\( = \left( {x - 3} \right)\left( {{x^2} + xy + {y^2}} \right) - \left( {{x^2}y - 3xy + x{y^2} - 3{y^2}} \right)\)
\[ = x\left( {{x^2} + xy + {y^2}} \right) - 3\left( {{x^2} + xy + {y^2}} \right) - {x^2}y + 3xy - x{y^2} + 3{y^2}\]
\[ = {x^3} + {x^2}y + x{y^2} - 3{x^2} - 3xy - 3{y^2} - {x^2}y + 3xy - x{y^2} + 3{y^2}\]
\[ = {x^3} - 3{x^2}\].
Như vậy, giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến \(y.\) Do đó ý d) đúng.
Vậy: a) Đ. b) S. c) S. d) Đ.
Lời giải
Hướng dẫn giải
Đáp án: a) S. b) Đ. c) Đ. d) S.
⦁ Biểu thức \(M\) là đa thức có bậc 24. Do đó ý a) sai.
⦁ Thay \(x = 0\,;\,y = - 2\) vào biểu thức \(N\), ta có:
\(N = - 22 \cdot 0 \cdot {\left( { - 2} \right)^3} - 42 \cdot \left( { - 2} \right) - 1 = 0 + 84 - 1 = 83.\)
Vậy với \(x = 0\,;\,y = - 2\) thì \(N = 83\). Do đó ý b) đúng.
⦁ Ta có \(M - N = \left( {23{x^{23}}y - 22x{y^{23}} + 21y - 1} \right) - \left( { - 22x{y^3} - 42y - 1} \right)\)
\( = 23{x^{23}}y - 22x{y^{23}} + 21y - 1 + 22x{y^3} + 42y + 1\)
\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + \left( {21y + 42y} \right) + \left( { - 1 + 1} \right)\)
\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y\).
Do đó ý c) đúng.
⦁ Từ \(M - N - P = 63y + 1\) suy ra
\(P = \left( {M - N} \right) - \left( {63y + 1} \right)\)
\( = \left( {23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y} \right) - \left( {63y + 1} \right)\)
\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y - 63y - 1\)
\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} - 1\).
Như vậy, \(P = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} - 1\). Do đó ý d) sai.
Vậy: a) S. b) Đ. c) Đ. d) S.
Câu 3
Một bể kính hình hộp chữ nhật có hai cạnh đáy là \(60{\rm{ cm}}\) và \(30{\rm{ cm}}{\rm{.}}\) Trong bể có một khối đá hình chóp tam giác đều với diện tích đáy là \(270{\rm{ c}}{{\rm{m}}^2}\), chiều cao \(30{\rm{ cm}}{\rm{.}}\) Người ta đổ nước vào bể sao cho nước ngập khối đá và đo được mức nước là \(60{\rm{ cm}}{\rm{.}}\)
a) Diện tích đáy của bể hình hộp chữ nhật là \(180{\rm{ c}}{{\rm{m}}^{\rm{2}}}\).
b) Thể tích khối đá hình chóp tam giác đều là: \(2{\rm{ }}700{\rm{ c}}{{\rm{m}}^3}.\)
c) Thể tích khối nước là \(108{\rm{ }}000{\rm{ c}}{{\rm{m}}^2}\).
d) Khi lấy khối đá ra thì mực nước của bể cao 56 cm.
Một bể kính hình hộp chữ nhật có hai cạnh đáy là \(60{\rm{ cm}}\) và \(30{\rm{ cm}}{\rm{.}}\) Trong bể có một khối đá hình chóp tam giác đều với diện tích đáy là \(270{\rm{ c}}{{\rm{m}}^2}\), chiều cao \(30{\rm{ cm}}{\rm{.}}\) Người ta đổ nước vào bể sao cho nước ngập khối đá và đo được mức nước là \(60{\rm{ cm}}{\rm{.}}\)
a) Diện tích đáy của bể hình hộp chữ nhật là \(180{\rm{ c}}{{\rm{m}}^{\rm{2}}}\).
b) Thể tích khối đá hình chóp tam giác đều là: \(2{\rm{ }}700{\rm{ c}}{{\rm{m}}^3}.\)
c) Thể tích khối nước là \(108{\rm{ }}000{\rm{ c}}{{\rm{m}}^2}\).
d) Khi lấy khối đá ra thì mực nước của bể cao 56 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.