Câu hỏi:

21/09/2025 8 Lưu

Đỉnh Fansipan (Lào Cai) cao \(3143{\rm{ m,}}\) là đỉnh núi cao nhất Đông Dương. Trên đỉnh núi, người ta đặt một chóp làm bằng inox có dạng hình chóp tam giác đều dài \(60{\rm{ cm,}}\)chiều cao \(90{\rm{ cm}}\) (như hình vẽ).

 Tam giác đều \(ABC\) có \(CH\) là đường trung tuyến. (ảnh 1)

 a) Tam giác đều \(ABC\)\(CH\) là đường trung tuyến.

 b) Độ dài đường trung tuyến \(CH\) bằng \(30\sqrt 3 {\rm{ cm}}\).

 c) Độ dài cạnh \(SH\) nhỏ hơn độ dài cạnh \(CH\).

 d) Diện tích xung quanh của hình chóp là \(8635{\rm{ c}}{{\rm{m}}^{\rm{2}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:           a) Đ.        b) Đ.        c) S.         d) S.

Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\)

Gọi đường cao của mặt đáy là \(CH\) nên \(CH\) đồng thời là đường trung tuyến của tam giác đều \(ABC.\)

Do đó ý a) đúng.

Vì \(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)

Áp dụng định lý Pythagore vào \(\Delta BHC\) vuông tại \(H\), ta có:

\(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\)

Suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).      (1)

Gọi \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Áp dụng định lý Pythagore vào \[\Delta SHG\] vuông tại \(G\), ta có:

\(S{H^2} = S{G^2} + H{G^2}\)\( = {90^2} + {30^2} = 9000\)

Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\)       (2)

Từ (1) và (2) suy ra độ dài cạnh \(SH\) lớn hơn độ dài cạnh \(CH\). Do đó ý c) sai.

Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\)

Vậy diện tích xung quanh của hình chóp là \(S = P.d = 90.30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\). Do đó ý d) sai.

Vậy:                 a) Đ.        b) Đ.        c) S.         d) S.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hai đa thức \(A = {x^2} - 4xy - 4\)\(B = 2{x^2} - 3xy + {y^2} - 4.\)

Đa thức \(M\) và \(P\) thỏa mãn B=A+M;P=x3Myx+yxy3y.

 a) Hạng tử tự do của đa thức \(A\) là \( - 4\).

 b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)

 c) \(M = {x^2} + 7xy + {y^2}.\)

 d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).

Lời giải

Hướng dẫn giải

Đáp án:           a) Đ.        b) S.        c) S.         d) Đ.

Đa thức \(A\) có hạng tử tự do là \( - 4\). Do đó ý a) đúng.

Thay \(x = 1\,;\,\,y = 0\) vào biểu thức \(B\), ta có:

\(B = 2 \cdot {1^2} - 3 \cdot 1 \cdot 0 + {0^2} - 4 = 2 - 4 = - 2.\)

Vậy với \(x = 1\,;\,\,y = 0\) thì \(N = - 2\). Do đó ý b) sai.

Ta có: \(B = A + M\)

Suy ra \(M = B - A\)

\( = 2{x^2} - 3xy + {y^2} - 4 - \left( {{x^2} - 4xy - 4} \right)\)

\( = 2{x^2} - 3xy + {y^2} - 4 - {x^2} + 4xy + 4\)

\( = {x^2} + xy + {y^2}.\)

Như vậy \(M = {x^2} + xy + {y^2}.\) Do đó ý c) sai.

Ta có \[P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right)\]

\( = \left( {x - 3} \right)\left( {{x^2} + xy + {y^2}} \right) - \left( {{x^2}y - 3xy + x{y^2} - 3{y^2}} \right)\)

\[ = x\left( {{x^2} + xy + {y^2}} \right) - 3\left( {{x^2} + xy + {y^2}} \right) - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} + {x^2}y + x{y^2} - 3{x^2} - 3xy - 3{y^2} - {x^2}y + 3xy - x{y^2} + 3{y^2}\]

\[ = {x^3} - 3{x^2}\].

Như vậy, giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến \(y.\) Do đó ý d) đúng.

Vậy:                 a) Đ.        b) S.         c) S.         d) Đ.

Lời giải

Hướng dẫn giải

Đáp án:           a) S.         b) Đ.        c) Đ.        d) S.

Biểu thức \(M\)đa thức có bậc 24. Do đó ý a) sai.

Thay \(x = 0\,;\,y = - 2\) vào biểu thức \(N\), ta có:

\(N = - 22 \cdot 0 \cdot {\left( { - 2} \right)^3} - 42 \cdot \left( { - 2} \right) - 1 = 0 + 84 - 1 = 83.\)

Vậy với \(x = 0\,;\,y = - 2\) thì \(N = 83\). Do đó ý b) đúng.

Ta có \(M - N = \left( {23{x^{23}}y - 22x{y^{23}} + 21y - 1} \right) - \left( { - 22x{y^3} - 42y - 1} \right)\)

          \( = 23{x^{23}}y - 22x{y^{23}} + 21y - 1 + 22x{y^3} + 42y + 1\)

          \( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + \left( {21y + 42y} \right) + \left( { - 1 + 1} \right)\)

          \( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y\).

Do đó ý c) đúng.

Từ \(M - N - P = 63y + 1\) suy ra

\(P = \left( {M - N} \right) - \left( {63y + 1} \right)\)

\( = \left( {23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y} \right) - \left( {63y + 1} \right)\)

\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} + 63y - 63y - 1\)

\( = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} - 1\).

Như vậy, \(P = 23{x^{23}}y - 22x{y^{23}} + 22x{y^3} - 1\). Do đó ý d) sai.

Vậy:                 a) S.         b) Đ.        c) Đ.        d) S.

Câu 3

Một bể kính hình hộp chữ nhật có hai cạnh đáy là \(60{\rm{ cm}}\)\(30{\rm{ cm}}{\rm{.}}\) Trong bể có một khối đá hình chóp tam giác đều với diện tích đáy là \(270{\rm{ c}}{{\rm{m}}^2}\), chiều cao \(30{\rm{ cm}}{\rm{.}}\) Người ta đổ nước vào bể sao cho nước ngập khối đá và đo được mức nước là \(60{\rm{ cm}}{\rm{.}}\)

Diện tích đáy của bể hình hộp chữ nhật là \(180{\rm{ c}}{{\rm{m}}^{\rm{2}}}\). (ảnh 1) 

 a) Diện tích đáy của bể hình hộp chữ nhật là \(180{\rm{ c}}{{\rm{m}}^{\rm{2}}}\).

 b) Thể tích khối đá hình chóp tam giác đều là: \(2{\rm{ }}700{\rm{ c}}{{\rm{m}}^3}.\)

 c) Thể tích khối nước là \(108{\rm{ }}000{\rm{ c}}{{\rm{m}}^2}\).

 d) Khi lấy khối đá ra thì mực nước của bể cao 56 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP