Cho \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề nhau, \(Om\) là tia phân giác của \(\widehat {xOy}\), \(On\) là tia phân giác của \(\widehat {yOz}.\) Biết \(\widehat {xOm} = 30^\circ ,\widehat {nOz} = 25^\circ \) (hình vẽ bên dưới).

Hỏi số đo của \(\widehat {xOz}\) bằng bao nhiêu độ?
Cho \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề nhau, \(Om\) là tia phân giác của \(\widehat {xOy}\), \(On\) là tia phân giác của \(\widehat {yOz}.\) Biết \(\widehat {xOm} = 30^\circ ,\widehat {nOz} = 25^\circ \) (hình vẽ bên dưới).
Hỏi số đo của \(\widehat {xOz}\) bằng bao nhiêu độ?
Quảng cáo
Trả lời:

Đáp án: 110
Vì \(Om\) là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOy} = 2\widehat {mOy} = 2 \cdot 30^\circ = 60^\circ \).
Vì \(On\) là tia phân giác của \(\widehat {yOz}\) nên \(\widehat {yOz} = 2\widehat {zOn} = 2 \cdot 25^\circ = 50^\circ .\)
Mà \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề nhau nên \(\widehat {yOz} + \widehat {xOy} = \widehat {zOx}\). Do đó, \(\widehat {xOz} = 50^\circ + 60^\circ = 110^\circ .\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 3
Ta có: \(\frac{{x + 4}}{{30}}\) có mẫu số \(30 = 2 \cdot 5 \cdot 3\). Do đó, để viết được phân số dưới dạng số thập phân hữu hạn thì tử số \(\left( {x + 4} \right)\) là số chia hết cho \(3\).
Có \(x \in \mathbb{N},x < 10\) nên \(0 \le x < 10\) Do đó, \(0 + 4 \le x + 4 < 10 + 4\) hay \(4 \le x + 4 < 14\).
Suy ra \(x + 4 \in \left\{ {6;9;12} \right\}\) nên \(x \in \left\{ {2;5;8} \right\}\).
Vậy có 3 số tự nhiên \(x < 10\) thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án: \( - 0,6\)
Ta có: \( - \sqrt {\frac{{25}}{9}} = - \sqrt {{{\left( {\frac{5}{3}} \right)}^2}} = - \frac{5}{3}\).
Do đó, nghịch đảo của \( - \sqrt {\frac{{25}}{9}} \) là \( - \frac{3}{5}\).
Lại có \( - \frac{3}{5} = - 0,6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) tạo thành \(\widehat {xOy} = 90^\circ \). Xét tính đúng sai của mệnh đề sau:
a) \(\widehat {x'Oy'} = 180^\circ \).
b) \(\widehat {xOy'} = 90^\circ \).
c) Hai góc \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là cặp góc đối đỉnh.
d) Hai góc \(\widehat {xOy'}\) và \(\widehat {x'Oy'}\) là cặp góc đồng vị.
Hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) tạo thành \(\widehat {xOy} = 90^\circ \). Xét tính đúng sai của mệnh đề sau:
a) \(\widehat {x'Oy'} = 180^\circ \).
b) \(\widehat {xOy'} = 90^\circ \).
c) Hai góc \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là cặp góc đối đỉnh.
d) Hai góc \(\widehat {xOy'}\) và \(\widehat {x'Oy'}\) là cặp góc đồng vị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.