Cho góc bẹt \(\widehat {xOy}\). Vẽ tia \(Oz\) sao cho \(\widehat {xOz} = 80^\circ \). Trên mặt phẳng bờ \(Ox\) chứa tia \(Oz\) vẽ tia \(Ot\) sao cho \[\widehat {xOt} = 160^\circ \]. Chứng tỏ \(Oz\) là tia phân giác của \(\widehat {xOt}\).
Cho góc bẹt \(\widehat {xOy}\). Vẽ tia \(Oz\) sao cho \(\widehat {xOz} = 80^\circ \). Trên mặt phẳng bờ \(Ox\) chứa tia \(Oz\) vẽ tia \(Ot\) sao cho \[\widehat {xOt} = 160^\circ \]. Chứng tỏ \(Oz\) là tia phân giác của \(\widehat {xOt}\).
Quảng cáo
Trả lời:

Vì ba tia \(Ox,\,\,Oz,\,\,Ot\) cùng nằm trên một nửa mặt phẳng có bờ là tia \(Ox\) và \(\widehat {xOz} < \widehat {xOt}\)
Nên tia \(Oz\) nằm giữa hai tia \(Ox\) và \(Ot\).
Lại có \(\widehat {xOz} = 80^\circ = \frac{{160^\circ }}{2} = \frac{{\widehat {xOt}}}{2}\) nên \(Oz\) là tia phân giác của \(\widehat {xOt}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
c) Ta có \({x^2} \ge 0\) với mọi \(x \in \mathbb{R}\)
\({x^2} + 5 \ge 5\) với mọi \(x \in \mathbb{R}\)
\(\left| {{x^2} + 5} \right| \ge 5\) với mọi \(x \in \mathbb{R}\)
\( - \left| {{x^2} + 5} \right| \le - 5\) với mọi \(x \in \mathbb{R}\)
\(6 - \left| {{x^2} + 5} \right| \le 1\) với mọi \(x \in \mathbb{R}\)
Dấu xảy ra khi và chỉ khi \({x^2} = 0\) hay \(x = 0\).
Vậy giá trị lớn nhất của biểu thức đã cho là 1 khi \(x = 0\).
Lời giải
b) Ta có \(\left| {6x - 1} \right| \ge 0\) với mọi \(x \in \mathbb{R}\)
\( - \left| {6x - 1} \right| \le 0\) với mọi \(x \in \mathbb{R}\)
\(7 - \left| {6x - 1} \right| \le 7\) với mọi \(x \in \mathbb{R}\)
Dấu xảy ra khi và chỉ khi \(\left| {6x - 1} \right| = 0\) nên \(6x - 1 = 0\) hay \(x = \frac{1}{6}\).
Vậy giá trị lớn nhất của biểu thức đã cho là 7 khi \(x = \frac{1}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.