Cho góc bẹt \(xOy\). Vẽ ba tia \(Om,\,\,On,\,\,Oz\) sao cho tia \(Om\) nằm giữa hai tia \[Ox,\,\,Oz\] và \(\widehat {xOm} = 50^\circ ,\,\,\widehat {xOz} = 130^\circ \). Vẽ tia \(On\) là tia đối của tia \(Oz.\)
a) Vẽ hình và kể tên các góc kề bù với góc \(xOz\) có trong hình vẽ.
b) Tính số đo của góc \(yOz.\) Giải thích tại sao tia \[Ox\] là tia phân giác của góc \(mOn.\)
Cho góc bẹt \(xOy\). Vẽ ba tia \(Om,\,\,On,\,\,Oz\) sao cho tia \(Om\) nằm giữa hai tia \[Ox,\,\,Oz\] và \(\widehat {xOm} = 50^\circ ,\,\,\widehat {xOz} = 130^\circ \). Vẽ tia \(On\) là tia đối của tia \(Oz.\)
a) Vẽ hình và kể tên các góc kề bù với góc \(xOz\) có trong hình vẽ.
b) Tính số đo của góc \(yOz.\) Giải thích tại sao tia \[Ox\] là tia phân giác của góc \(mOn.\)
Quảng cáo
Trả lời:

a) Học sinh vẽ hình đúng số đo góc.
Góc kề bù với góc \(xOz\) là \(\widehat {yOz}\) và \(\widehat {xOn}\).
b) Ta có \(\widehat {xOz} + \widehat {yOz} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {yOz} = 180^\circ - \widehat {xOz} = 180^\circ - 130^\circ = 50^\circ \)
Lại có \(\widehat {xOn} = \widehat {yOz} = 50^\circ \) (hai góc đối đỉnh)Do tia \(Ox\) nằm giữa hai tia \(Om,\,\,On\) và \(\widehat {xOn} = \widehat {xOm} = 50^\circ \) nên tia \(Ox\) là tia phân giác của góc \(mOn.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Các cặp góc đối đỉnh trong hình là: \(\widehat {xOz}\) và \(\widehat {tOy}\); \(\widehat {xOt}\) và \(\widehat {tOy}\).
b) Từ hình vẽ ta thấy \(\widehat {xOz} = 60^\circ \)
Vì \(\widehat {xOz}\) và \(\widehat {tOy}\) là hai góc đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 60^\circ \).
Vì góc \(\widehat {xOz}\)và \(\widehat {xOt}\) là hai góc kề bù nên \(\widehat {xOz} + \widehat {xOt} = 180^\circ \).Suy ra \(\widehat {xOt} = 180^\circ - \widehat {xOz} = 180^\circ - 60^\circ = 120^\circ \).
Do đó \(\widehat {xOt} = 120^\circ \).
Vì \(Om\) là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {mOx} = \widehat {mOz} = \frac{{\widehat {xOz}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).
Vậy \(\widehat {tOy} = 60^\circ ;\,\,\widehat {xOt} = 120^\circ ;\,\,\widehat {mOx} = 30^\circ \).
Lời giải
Xét gói linh hoạt, ta có:
Một tháng, gói linh hoạt cho khách hàng sử dụng số Gb là: \(30 \cdot 4 = 120\) (Gb)
Anh Hải sử dụng mỗi tháng vượt quá số Gb là: \(150 - 120 = 30\) (Gb).
Số tiền anh Hải phải trả thêm là: \(30 \cdot 5{\rm{ }}000 = 150{\rm{ }}000\) (đồng).
Vậy một tháng anh Hải dùng gói linh hoạt thì phải trả số tiền là:
\(150{\rm{ }}000 + 160{\rm{ }}000 = 310{\rm{ }}000\) (đồng).
Do đó, khách hàng nên sử dụng gói cố định.
Khách hàng sử dụng gói cố định sẽ tiết kiệm được số tiền là: \(310{\rm{ }}000 - 285{\rm{ }}000 = 25{\rm{ }}000\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.