Câu hỏi:

22/09/2025 17 Lưu

Tìm \(n \in \mathbb{Z}\) để các số hữu tỉ sau là những số nguyên:

c) \(\frac{{ - 3}}{{n - 4}}\);

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c) Để \(\frac{{ - 3}}{{n - 4}}\) là số nguyên thì \( - 3\,\, \vdots \,\,\left( {n - 4} \right)\) nên \(n - 4 \in \)Ư\(\left( 3 \right) = \left\{ { \pm 1\,;\, \pm 3} \right\}\).

Ta có bảng giá trị sau:

\[n - 4\]

\[ - 1\]

1

\[ - 3\]

3

\[n\]

3

4

1

7

Vậy \(n \in \left\{ {1\,;\,\,3\,;\,\,4\,;\,\,7} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) Ta có \({x^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\({x^2} + 5 \ge 5\) với mọi \(x \in \mathbb{R}\)

\(\left| {{x^2} + 5} \right| \ge 5\) với mọi \(x \in \mathbb{R}\)

\( - \left| {{x^2} + 5} \right| \le - 5\) với mọi \(x \in \mathbb{R}\)

\(6 - \left| {{x^2} + 5} \right| \le 1\) với mọi \(x \in \mathbb{R}\)

Dấu xảy ra khi và chỉ khi \({x^2} = 0\) hay \(x = 0\).

Vậy giá trị lớn nhất của biểu thức đã cho là 1 khi \(x = 0\).

Lời giải

b) Ta có \(\left| {6x - 1} \right| \ge 0\) với mọi \(x \in \mathbb{R}\)

\( - \left| {6x - 1} \right| \le 0\) với mọi \(x \in \mathbb{R}\)

\(7 - \left| {6x - 1} \right| \le 7\) với mọi \(x \in \mathbb{R}\)

Dấu xảy ra khi và chỉ khi \(\left| {6x - 1} \right| = 0\) nên \(6x - 1 = 0\) hay \(x = \frac{1}{6}\).

Vậy giá trị lớn nhất của biểu thức đã cho là 7 khi \(x = \frac{1}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP