Câu hỏi:

22/09/2025 77 Lưu

Tính giá trị biểu thức \(A = \frac{{2x + 3y}}{{x + 2y}}\) biết \(\frac{x}{y} = \frac{1}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Cách 1: Chia cả tử số và mẫu số cho \(y\) ta được:

\(A = \frac{{2.\frac{x}{y} + 3.\frac{y}{y}}}{{\frac{x}{y} + 2.\frac{y}{y}}} = \frac{{2.\frac{x}{y} + 3}}{{\frac{x}{y} + 2}} = \frac{{2.\frac{1}{2} + 3}}{{\frac{1}{2} + 2}} = \frac{8}{5}\).

Cách 2: Từ \(\frac{x}{y} = \frac{1}{2}\) suy ra \(y = 2x\). Thay vào \(A\) ta được: \(A = \frac{{2x + 3y}}{{x + 2y}} = \frac{{2x + 3 \cdot 2x}}{{x + 2 \cdot 2x}} = \frac{{8x}}{{5x}} = \frac{8}{5}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kể tên các cặp góc đối đỉnh trong hình. (ảnh 2)

a) Các cặp góc đối đỉnh trong hình là: \(\widehat {xOz}\) và \(\widehat {tOy}\); \(\widehat {xOt}\) và \(\widehat {tOy}\).

b) Từ hình vẽ ta thấy \(\widehat {xOz} = 60^\circ \)

Vì \(\widehat {xOz}\) và \(\widehat {tOy}\) là hai góc đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 60^\circ \).

Vì góc \(\widehat {xOz}\)và \(\widehat {xOt}\) là hai góc kề bù nên \(\widehat {xOz} + \widehat {xOt} = 180^\circ \).

Suy ra \(\widehat {xOt} = 180^\circ - \widehat {xOz} = 180^\circ - 60^\circ = 120^\circ \).

Do đó \(\widehat {xOt} = 120^\circ \).

\(Om\) là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {mOx} = \widehat {mOz} = \frac{{\widehat {xOz}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).

Vậy \(\widehat {tOy} = 60^\circ ;\,\,\widehat {xOt} = 120^\circ ;\,\,\widehat {mOx} = 30^\circ \).

Lời giải

a) Học sinh vẽ hình đúng số đo góc.

Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).

b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BOE} = 180^\circ  - \widehat {AOB} = 180^\circ  - 50^\circ  = 130^\circ \).

Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).

Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {AOD} = 180^\circ  - \widehat {AOC} = 180^\circ  - 25^\circ  = 155^\circ \).

Vậy \(\widehat {BOE} = 130^\circ \,;\,\,\widehat {AOD} = 155^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP