Câu hỏi:

22/09/2025 72 Lưu

Tìm giá trị nhỏ nhất của biểu thức \(A = {\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có: \({\left( {{x^2} - 9} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\(\left| {y - 2} \right| \ge 0\) với mọi \(y \in \mathbb{R}\)

Khi đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| \ge 0\) nên \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 0 + 10.\)

Do đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 10\).

Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{x^2} - 9 = 0\\\left| {y - 2} \right| = 0\end{array} \right.\)  nên \(\left\{ \begin{array}{l}x = \pm 3\\y = 2\end{array} \right.\).

Vậy giá trị nhỏ nhất của biểu thức \(A\) bằng \(10\) khi \(\left( {x;y} \right) = \left( { - 3;2} \right)\) hay \(\left( {x\,;y} \right) = \left( {3\,;2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kể tên các cặp góc đối đỉnh trong hình. (ảnh 2)

a) Các cặp góc đối đỉnh trong hình là: \(\widehat {xOz}\) và \(\widehat {tOy}\); \(\widehat {xOt}\) và \(\widehat {tOy}\).

b) Từ hình vẽ ta thấy \(\widehat {xOz} = 60^\circ \)

Vì \(\widehat {xOz}\) và \(\widehat {tOy}\) là hai góc đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 60^\circ \).

Vì góc \(\widehat {xOz}\)và \(\widehat {xOt}\) là hai góc kề bù nên \(\widehat {xOz} + \widehat {xOt} = 180^\circ \).

Suy ra \(\widehat {xOt} = 180^\circ - \widehat {xOz} = 180^\circ - 60^\circ = 120^\circ \).

Do đó \(\widehat {xOt} = 120^\circ \).

\(Om\) là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {mOx} = \widehat {mOz} = \frac{{\widehat {xOz}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).

Vậy \(\widehat {tOy} = 60^\circ ;\,\,\widehat {xOt} = 120^\circ ;\,\,\widehat {mOx} = 30^\circ \).

Lời giải

a) Học sinh vẽ hình đúng số đo góc.

Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).

b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BOE} = 180^\circ  - \widehat {AOB} = 180^\circ  - 50^\circ  = 130^\circ \).

Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).

Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {AOD} = 180^\circ  - \widehat {AOC} = 180^\circ  - 25^\circ  = 155^\circ \).

Vậy \(\widehat {BOE} = 130^\circ \,;\,\,\widehat {AOD} = 155^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP