Tìm giá trị nhỏ nhất của biểu thức \(A = {\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10\).
Tìm giá trị nhỏ nhất của biểu thức \(A = {\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10\).
Quảng cáo
Trả lời:

Hướng dẫn giải
Ta có: \({\left( {{x^2} - 9} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)
\(\left| {y - 2} \right| \ge 0\) với mọi \(y \in \mathbb{R}\)
Khi đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| \ge 0\) nên \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 0 + 10.\)
Do đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 10\).
Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{x^2} - 9 = 0\\\left| {y - 2} \right| = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}x = \pm 3\\y = 2\end{array} \right.\).
Vậy giá trị nhỏ nhất của biểu thức \(A\) bằng \(10\) khi \(\left( {x;y} \right) = \left( { - 3;2} \right)\) hay \(\left( {x\,;y} \right) = \left( {3\,;2} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
c) Ta có \({x^2} \ge 0\) với mọi \(x \in \mathbb{R}\)
\({x^2} + 5 \ge 5\) với mọi \(x \in \mathbb{R}\)
\(\left| {{x^2} + 5} \right| \ge 5\) với mọi \(x \in \mathbb{R}\)
\( - \left| {{x^2} + 5} \right| \le - 5\) với mọi \(x \in \mathbb{R}\)
\(6 - \left| {{x^2} + 5} \right| \le 1\) với mọi \(x \in \mathbb{R}\)
Dấu xảy ra khi và chỉ khi \({x^2} = 0\) hay \(x = 0\).
Vậy giá trị lớn nhất của biểu thức đã cho là 1 khi \(x = 0\).
Lời giải
b) Ta có \(\left| {6x - 1} \right| \ge 0\) với mọi \(x \in \mathbb{R}\)
\( - \left| {6x - 1} \right| \le 0\) với mọi \(x \in \mathbb{R}\)
\(7 - \left| {6x - 1} \right| \le 7\) với mọi \(x \in \mathbb{R}\)
Dấu xảy ra khi và chỉ khi \(\left| {6x - 1} \right| = 0\) nên \(6x - 1 = 0\) hay \(x = \frac{1}{6}\).
Vậy giá trị lớn nhất của biểu thức đã cho là 7 khi \(x = \frac{1}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.