Cho hình vẽ bên.

Biết \(\widehat {AOB} = 50^\circ \), tia \(OC\) là tia phân giác của góc \(AOB\).
a) Vẽ lại hình và kể tên góc kề bù với góc \(AOC.\)
b) Tính số đo của mỗi góc \(BOE,\,\,AOD\).
Cho hình vẽ bên.

Biết \(\widehat {AOB} = 50^\circ \), tia \(OC\) là tia phân giác của góc \(AOB\).
a) Vẽ lại hình và kể tên góc kề bù với góc \(AOC.\)
b) Tính số đo của mỗi góc \(BOE,\,\,AOD\).Quảng cáo
Trả lời:
a) Học sinh vẽ hình đúng số đo góc.
Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).
b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)Suy ra \(\widehat {BOE} = 180^\circ - \widehat {AOB} = 180^\circ - 50^\circ = 130^\circ \).
Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).
Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {AOD} = 180^\circ - \widehat {AOC} = 180^\circ - 25^\circ = 155^\circ \).
Vậy \(\widehat {BOE} = 130^\circ \,;\,\,\widehat {AOD} = 155^\circ .\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Các cặp góc đối đỉnh trong hình là: \(\widehat {xOz}\) và \(\widehat {tOy}\); \(\widehat {xOt}\) và \(\widehat {tOy}\).
b) Từ hình vẽ ta thấy \(\widehat {xOz} = 60^\circ \)
Vì \(\widehat {xOz}\) và \(\widehat {tOy}\) là hai góc đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 60^\circ \).
Vì góc \(\widehat {xOz}\)và \(\widehat {xOt}\) là hai góc kề bù nên \(\widehat {xOz} + \widehat {xOt} = 180^\circ \).Suy ra \(\widehat {xOt} = 180^\circ - \widehat {xOz} = 180^\circ - 60^\circ = 120^\circ \).
Do đó \(\widehat {xOt} = 120^\circ \).
Vì \(Om\) là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {mOx} = \widehat {mOz} = \frac{{\widehat {xOz}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).
Vậy \(\widehat {tOy} = 60^\circ ;\,\,\widehat {xOt} = 120^\circ ;\,\,\widehat {mOx} = 30^\circ \).
Lời giải
Hướng dẫn giải
Ta có \[P = \frac{{14 - x}}{{4 - x}} = 1 + \frac{{10}}{{4 - x}}\].
Để \({P_{\min }}\) thì \({\left( {\frac{{10}}{{4 - x}}} \right)_{{\rm{min}}}}\), mà \(4 - x < 0\) và \[x\] nguyên nên \(4 - x = - 1\) nên \(x = 5\).
Vậy \({P_{\min }} = - 9\) khi \(x = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
