Câu hỏi:

22/09/2025 11 Lưu

Cho hình vẽ bên.

Cho hình vẽ bên.  Biết \(\widehat {AOB} = 50^\circ \), tia \(OC\) là tia phân giác của góc \(AOB\).  a) Vẽ lại hình và kể tên góc kề bù với góc \(AOC.\) b) Tính số đo của mỗi góc \(BOE,\,\,AOD\). (ảnh 1)

Biết \(\widehat {AOB} = 50^\circ \), tia \(OC\) là tia phân giác của góc \(AOB\).

a) Vẽ lại hình và kể tên góc kề bù với góc \(AOC.\)

b) Tính số đo của mỗi góc \(BOE,\,\,AOD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Học sinh vẽ hình đúng số đo góc.

Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).

b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BOE} = 180^\circ  - \widehat {AOB} = 180^\circ  - 50^\circ  = 130^\circ \).

Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).

Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {AOD} = 180^\circ  - \widehat {AOC} = 180^\circ  - 25^\circ  = 155^\circ \).

Vậy \(\widehat {BOE} = 130^\circ \,;\,\,\widehat {AOD} = 155^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

d) Ta có \({\left( {5x - 6} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\(2 + {\left( {5x - 6} \right)^2} \ge 2\) với mọi \(x \in \mathbb{R}\)

\(\frac{3}{{2 + {{\left( {5x - 6} \right)}^2}}} \le \frac{3}{2}\) với mọi \(x \in \mathbb{R}\)

\(14 + \frac{3}{{2 + {{\left( {5x - 6} \right)}^2}}} \le \frac{{31}}{2}\) với mọi \(x \in \mathbb{R}\)

Dấu xảy ra khi và chỉ khi \({\left( {5x - 6} \right)^2} = 0\) nên \(5x - 6 = 0\) hay \(x = \frac{6}{5}\).

Vậy giá trị lớn nhất của biểu thức đã cho là \(\frac{{31}}{2}\) khi \(x = \frac{6}{5}\).

Lời giải

Ta có 500 nghìn đồng = 0,5 triệu đồng.

Giá bán của một chiếc điện thoại tại cửa hàng đó là:

\[27,5\,\,.\,\,160\% = 44\] (triệu đồng)

Cửa hàng thu được số tiền từ 15 chiếc điện thoại được thanh toán bằng quét mã VNPAY-QR là:

\(15\,\,.\,\,\left( {44 - 0,5} \right) = 652,5\) (triệu đồng).

Cửa hàng thu được số tiền từ 35 chiếc điện thoại còn lại là:

\(35\,\,.\,\,44 = 1\,\,540\) (triệu đồng).

Cửa hàng nhập điện thoại với số tiền vốn và chi phí vận chuyển là:

\(50\,\,.\,\,27,5 + 20 = 1\,395\) (triệu đồng).

Số tiền lãi cửa hàng thu được (không tính các chi phí khác ngoài chi phí vận chuyển) là:

\(1\,540 + 625,5 - 1\,395 = 770,5\) (triệu đồng).

Vậy sau khi bán hết lô hàng đã nhập thì cửa hàng lãi \[770,5\] triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP