Cho hình vẽ bên.

a) Kể tên các cặp góc đối đỉnh trong hình.
b) Vẽ \(Om\) là tia phân giác của góc \(\widehat {xOz}\). Tính số đo góc \[\widehat {tOy};\,\,\widehat {xOt};\]\(\widehat {mOx}\).
Cho hình vẽ bên.

a) Kể tên các cặp góc đối đỉnh trong hình.
b) Vẽ \(Om\) là tia phân giác của góc \(\widehat {xOz}\). Tính số đo góc \[\widehat {tOy};\,\,\widehat {xOt};\]\(\widehat {mOx}\).Quảng cáo
Trả lời:

a) Các cặp góc đối đỉnh trong hình là: \(\widehat {xOz}\) và \(\widehat {tOy}\); \(\widehat {xOt}\) và \(\widehat {tOy}\).
b) Từ hình vẽ ta thấy \(\widehat {xOz} = 60^\circ \)
Vì \(\widehat {xOz}\) và \(\widehat {tOy}\) là hai góc đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 60^\circ \).
Vì góc \(\widehat {xOz}\)và \(\widehat {xOt}\) là hai góc kề bù nên \(\widehat {xOz} + \widehat {xOt} = 180^\circ \).Suy ra \(\widehat {xOt} = 180^\circ - \widehat {xOz} = 180^\circ - 60^\circ = 120^\circ \).
Do đó \(\widehat {xOt} = 120^\circ \).
Vì \(Om\) là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {mOx} = \widehat {mOz} = \frac{{\widehat {xOz}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).
Vậy \(\widehat {tOy} = 60^\circ ;\,\,\widehat {xOt} = 120^\circ ;\,\,\widehat {mOx} = 30^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Học sinh vẽ hình đúng số đo góc.
Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).
b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)Suy ra \(\widehat {BOE} = 180^\circ - \widehat {AOB} = 180^\circ - 50^\circ = 130^\circ \).
Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).
Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {AOD} = 180^\circ - \widehat {AOC} = 180^\circ - 25^\circ = 155^\circ \).
Vậy \(\widehat {BOE} = 130^\circ \,;\,\,\widehat {AOD} = 155^\circ .\)
Lời giải
Hướng dẫn giải
Ta có \[P = \frac{{14 - x}}{{4 - x}} = 1 + \frac{{10}}{{4 - x}}\].
Để \({P_{\min }}\) thì \({\left( {\frac{{10}}{{4 - x}}} \right)_{{\rm{min}}}}\), mà \(4 - x < 0\) và \[x\] nguyên nên \(4 - x = - 1\) nên \(x = 5\).
Vậy \({P_{\min }} = - 9\) khi \(x = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
