Câu hỏi:

22/09/2025 64 Lưu

Cho hình vẽ bên.

Kể tên các cặp góc đối đỉnh trong hình. (ảnh 1)

a) Kể tên các cặp góc đối đỉnh trong hình.

b) Vẽ \(Om\) là tia phân giác của góc \(\widehat {xOz}\). Tính số đo góc \[\widehat {tOy};\,\,\widehat {xOt};\]\(\widehat {mOx}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Kể tên các cặp góc đối đỉnh trong hình. (ảnh 2)

a) Các cặp góc đối đỉnh trong hình là: \(\widehat {xOz}\) và \(\widehat {tOy}\); \(\widehat {xOt}\) và \(\widehat {tOy}\).

b) Từ hình vẽ ta thấy \(\widehat {xOz} = 60^\circ \)

Vì \(\widehat {xOz}\) và \(\widehat {tOy}\) là hai góc đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 60^\circ \).

Vì góc \(\widehat {xOz}\)và \(\widehat {xOt}\) là hai góc kề bù nên \(\widehat {xOz} + \widehat {xOt} = 180^\circ \).

Suy ra \(\widehat {xOt} = 180^\circ - \widehat {xOz} = 180^\circ - 60^\circ = 120^\circ \).

Do đó \(\widehat {xOt} = 120^\circ \).

Vì \(Om\) là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {mOx} = \widehat {mOz} = \frac{{\widehat {xOz}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).

Vậy \(\widehat {tOy} = 60^\circ ;\,\,\widehat {xOt} = 120^\circ ;\,\,\widehat {mOx} = 30^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Học sinh vẽ hình đúng số đo góc.

Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).

b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BOE} = 180^\circ  - \widehat {AOB} = 180^\circ  - 50^\circ  = 130^\circ \).

Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).

Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {AOD} = 180^\circ  - \widehat {AOC} = 180^\circ  - 25^\circ  = 155^\circ \).

Vậy \(\widehat {BOE} = 130^\circ \,;\,\,\widehat {AOD} = 155^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP