Tổng kết các phong trào thi đua chào mừng ngày Nhà Giáo Việt Nam 20/11, ba lớp 7A, 7B, 7C được thưởng 160 quyển vở. Biết số vở ba lớp 7A, 7B, 7C lần lượt tỉ lệ với 9; 7; 4. Gọi \[x,y,z\] lần lượt là số quyển vở được thưởng của ba lớp 7A, 7B, 7C.
a) \[x + y + z = 160\].
b) Số vở ba lớp 7A, 7B, 7C được thưởng tỉ lệ với 9; 7; 4 nên \[9x = 7y = 4z\].
c) Lớp 7A được thưởng số quyển vở nhiều nhất.
d) Có hai lớp được thưởng số vở nhiều hơn 60 quyển.
Tổng kết các phong trào thi đua chào mừng ngày Nhà Giáo Việt Nam 20/11, ba lớp 7A, 7B, 7C được thưởng 160 quyển vở. Biết số vở ba lớp 7A, 7B, 7C lần lượt tỉ lệ với 9; 7; 4. Gọi \[x,y,z\] lần lượt là số quyển vở được thưởng của ba lớp 7A, 7B, 7C.
a) \[x + y + z = 160\].
b) Số vở ba lớp 7A, 7B, 7C được thưởng tỉ lệ với 9; 7; 4 nên \[9x = 7y = 4z\].
c) Lớp 7A được thưởng số quyển vở nhiều nhất.
d) Có hai lớp được thưởng số vở nhiều hơn 60 quyển.
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: a) Đ b) S c) Đ d) S
Gọi \[x,y,z\] lần lượt là số quyển vở được thưởng của ba lớp 7A, 7B, 7C \[\left( {x,y,z \in \mathbb{N}} \right)\].
• Vì ba lớp 7A, 7B, 7C được thưởng 160 quyển vở nên ta có \[x + y + z = 160\]. Do đó, ý a) là đúng.
• Số vở ba lớp 7A, 7B, 7C được thưởng tỉ lệ với 9; 7; 4 nên ta có \[\frac{x}{9} = \frac{y}{7} = \frac{z}{4}\]. Do đó, ý b) là sai.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \[\frac{x}{9} = \frac{y}{7} = \frac{z}{4} = \frac{{x + y + z}}{{9 + 7 + 4}} = \frac{{160}}{{20}} = 8\].
Suy ra \[\frac{x}{9} = 8\] nên \[x = 72\] (quyển)
\[\frac{y}{7} = 8\] nên \[y = 56\] (quyển)
\[\frac{z}{4} = 8\] nên \[z = 32\] (quyển)
Do đó, lớp 7A được thưởng nhiều vở nhất. Vậy ý c) là đúng.
Nhận thấy, chỉ một lớp có số vở lớn hơn 60 quyển. Do đó, ý d) là sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
i) \(\frac{3}{5}:\left( {\frac{{ - 1}}{{15}} - \frac{1}{6}} \right) + \frac{3}{5}:\left( {\frac{{ - 1}}{3} - 1\frac{1}{{15}}} \right)\)
\( = \frac{3}{5}:\left( {\frac{{ - 1}}{{15}} - \frac{1}{6}} \right) + \frac{3}{5}:\left( {\frac{{ - 1}}{3} - \frac{{16}}{{15}}} \right)\)
\( = \frac{3}{5}:\frac{{ - 7}}{{30}} + \frac{3}{5}:\frac{{ - 7}}{5}\)
\( = \frac{3}{5}.\frac{{ - 30}}{7} + \frac{3}{5}.\frac{{ - 5}}{7}\)
\( = \frac{3}{5}.\left( {\frac{{ - 30}}{7} + \frac{{ - 5}}{7}} \right)\)
\( = \frac{3}{5}.\left( { - 5} \right) = - 3\).Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đ b) Đ c) Đ d) S
Nhận thấy,
• \(\widehat {ABy'}\) và \(\widehat {y'BC}\) là hai góc kề nhau. Do đó, ý a) đúng.
• Vì \(Ax\parallel yy'\) nên \(\widehat {xAB} = \widehat {BAy'} = 40^\circ \) (so le trong). Do đó, ý b) đúng.
• Lại có \(\widehat {ABy'} + \widehat {y'BC} = \widehat {ABC}\) suy ra \(\widehat {y'BC} = \widehat {ABC} - \widehat {ABy'} = 105^\circ - 40^\circ = 65^\circ \).
Suy ra \(\widehat {CBy'} = \widehat {BCz} = 65^\circ \).
Mà hai góc ở vị trí so le trong nên \(yy'\parallel Cx.\) Do đó, ý c) đúng.
• Có \(\widehat {CBy'}\) và \(\widehat {CBy}\) là hai góc kề bù nên \(\widehat {CBy'} + \widehat {CBy} = 180^\circ \), suy ra \(\widehat {CBy} = 180^\circ - \widehat {CBy'} = 115^\circ \).
Lại có \(BD\) là tia phân giác của \(\widehat {CBy}\) nên \(\widehat {CBD} = \widehat {DBy} = \widehat {\frac{{CBy}}{2}} = \frac{{115^\circ }}{2} = 57,5^\circ \).
Vì \(yy'\parallel Cx\) nên \(\widehat {CBy} = \widehat {CDB} = 57,5^\circ \) (so le trong)
Do đó, \(\widehat {CDB} < 60^\circ \).
Vậy ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.