Câu hỏi:

22/09/2025 9 Lưu

Tổng kết các phong trào thi đua chào mừng ngày Nhà Giáo Việt Nam 20/11, ba lớp 7A, 7B, 7C được thưởng 160 quyển vở. Biết số vở ba lớp 7A, 7B, 7C lần lượt tỉ lệ với 9; 7; 4. Gọi \[x,y,z\] lần lượt là số quyển vở được thưởng của ba lớp 7A, 7B, 7C.

        a) \[x + y + z = 160\].

        b) Số vở ba lớp 7A, 7B, 7C được thưởng tỉ lệ với 9; 7; 4 nên \[9x = 7y = 4z\].

        c) Lớp 7A được thưởng số quyển vở nhiều nhất.

        d) Có hai lớp được thưởng số vở nhiều hơn 60 quyển.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đ                             b) S                         c) Đ           d) S

Gọi \[x,y,z\] lần lượt là số quyển vở được thưởng của ba lớp 7A, 7B, 7C \[\left( {x,y,z \in \mathbb{N}} \right)\].

• Vì ba lớp 7A, 7B, 7C được thưởng 160 quyển vở nên ta có \[x + y + z = 160\]. Do đó, ý a) là đúng.

• Số vở ba lớp 7A, 7B, 7C được thưởng tỉ lệ với 9; 7; 4 nên ta có \[\frac{x}{9} = \frac{y}{7} = \frac{z}{4}\]. Do đó, ý b) là sai.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \[\frac{x}{9} = \frac{y}{7} = \frac{z}{4} = \frac{{x + y + z}}{{9 + 7 + 4}} = \frac{{160}}{{20}} = 8\].

Suy ra \[\frac{x}{9} = 8\] nên \[x = 72\] (quyển)

           \[\frac{y}{7} = 8\] nên \[y = 56\] (quyển)

           \[\frac{z}{4} = 8\] nên \[z = 32\] (quyển)

Do đó, lớp 7A được thưởng nhiều vở nhất. Vậy ý c) là đúng.

Nhận thấy, chỉ một lớp có số vở lớn hơn 60 quyển. Do đó, ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

i) \(\frac{3}{5}:\left( {\frac{{ - 1}}{{15}} - \frac{1}{6}} \right) + \frac{3}{5}:\left( {\frac{{ - 1}}{3} - 1\frac{1}{{15}}} \right)\)

\( = \frac{3}{5}:\left( {\frac{{ - 1}}{{15}} - \frac{1}{6}} \right) + \frac{3}{5}:\left( {\frac{{ - 1}}{3} - \frac{{16}}{{15}}} \right)\)

\( = \frac{3}{5}:\frac{{ - 7}}{{30}} + \frac{3}{5}:\frac{{ - 7}}{5}\)

\( = \frac{3}{5}.\frac{{ - 30}}{7} + \frac{3}{5}.\frac{{ - 5}}{7}\)

\( = \frac{3}{5}.\left( {\frac{{ - 30}}{7} + \frac{{ - 5}}{7}} \right)\)

\( = \frac{3}{5}.\left( { - 5} \right) = - 3\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đ                     b) Đ                  c) Đ                                                            d) S

Nhận thấy,

\(\widehat {ABy'}\)\(\widehat {y'BC}\) là hai góc kề nhau. Do đó, ý a) đúng.

• Vì \(Ax\parallel yy'\) nên \(\widehat {xAB} = \widehat {BAy'} = 40^\circ \) (so le trong). Do đó, ý b) đúng.

• Lại có \(\widehat {ABy'} + \widehat {y'BC} = \widehat {ABC}\) suy ra \(\widehat {y'BC} = \widehat {ABC} - \widehat {ABy'} = 105^\circ - 40^\circ = 65^\circ \).

Suy ra \(\widehat {CBy'} = \widehat {BCz} = 65^\circ \).

Mà hai góc ở vị trí so le trong nên \(yy'\parallel Cx.\) Do đó, ý c) đúng.

• Có \(\widehat {CBy'}\)\(\widehat {CBy}\) là hai góc kề bù nên \(\widehat {CBy'} + \widehat {CBy} = 180^\circ \), suy ra \(\widehat {CBy} = 180^\circ - \widehat {CBy'} = 115^\circ \).

Lại có \(BD\) là tia phân giác của \(\widehat {CBy}\) nên \(\widehat {CBD} = \widehat {DBy} = \widehat {\frac{{CBy}}{2}} = \frac{{115^\circ }}{2} = 57,5^\circ \).

\(yy'\parallel Cx\) nên \(\widehat {CBy} = \widehat {CDB} = 57,5^\circ \) (so le trong)

Do đó, \(\widehat {CDB} < 60^\circ \).

Vậy ý d) là sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP