Cho \(\Delta ABC\) nhọn \(\left( {AB < AC} \right)\) có đường trung trực của cạnh \(AB\) cắt \(BC\) tại \(D\), trên tia \(AD\) lấy điểm \(E\) sao cho \(AE = BC\).
a) Chứng minh \(\Delta ABC = \Delta BAE\).
b) Chứng minh \(AB\,\,{\rm{//}}\,\,CE\).
c) Chứng minh trung trực của cạnh \(AB,\,BE,\,AC\) cùng đi qua một điểm.
Cho \(\Delta ABC\) nhọn \(\left( {AB < AC} \right)\) có đường trung trực của cạnh \(AB\) cắt \(BC\) tại \(D\), trên tia \(AD\) lấy điểm \(E\) sao cho \(AE = BC\).
a) Chứng minh \(\Delta ABC = \Delta BAE\).
b) Chứng minh \(AB\,\,{\rm{//}}\,\,CE\).
c) Chứng minh trung trực của cạnh \(AB,\,BE,\,AC\) cùng đi qua một điểm.
Quảng cáo
Trả lời:

a) Chứng minh: \(\Delta ABC = \Delta BAE\).
Vì \(D\) nằm trên đường trung trực của \(AB\) nên \(DA = DB\).
Suy ra \(\Delta DAB\) cân tại \(D\).
Suy ra \(\widehat {DAB} = \widehat {DBA}\) hay \(\widehat {EAB} = \widehat {CBA}\).
Xét \(\Delta ABC\) và \(\Delta BAE\) có:
\(AB\) cạnh chung; \(\widehat {EAB} = \widehat {CBA}\) (cmt); \(AE = BC\) (giả thiết)
Vậy \(\Delta ABC = \Delta BAE\) (c.g.c)
b) Chứng minh \(AB\,\parallel \,CE\).
Ta có \(AE = BC\) (giả thiết); \(DA = DB\) (chứng minh trên)
Suy ra \(DA - AE = DB - BC\) nên \(DE = DC\).
Do đó \(\Delta DEC\) cân tại \(D\).
Suy ra \(\widehat {DEC} = \widehat {DAB} = \frac{{180^\circ - \widehat {ADB}}}{2}\) hay \(\widehat {DEC}\) và \(\widehat {DAB}\) ở vị trí đồng vị
Do đó \(AB\,\parallel CE\).
c) Trung trực của cạnh \(AB,\,BE,\,AC\) cùng đi qua một điểm
Gọi \(H\) là giao điểm của trung trực \(AB\) và \(AC\).
Suy ra \(HA = HB = HC\). \(\left( 1 \right)\).
Ta có \(H\) và \(D\) nằm trên trung trực của \(AB\) nên \(HD \bot AB\).
Mà \(AB\parallel CE\) nên \(HD \bot CE\).
Mặt khác \(\Delta DEC\) cân tại \(D\) có \(HD \bot CE\).
Suy ra \(HD\) là trung trực của \(CE\) hay \(HE = HC\) \(\left( 2 \right)\).
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(HB = HE\) nên \(H\) thuộc trung trực của \(BE\).
Vậy trung trực của \(AB,\,\,\,BE,\,\,\,AC\) cùng đi qua một điểm \(H\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 6 + \frac{{214}}{{86}} + \frac{{132}}{{84}} + \frac{{54}}{{82}}\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \left( {1 + \frac{{214}}{{86}}} \right) + \left( {2 + \frac{{132}}{{84}}} \right) + \left( {3 + \frac{{54}}{{82}}} \right)\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \frac{{300}}{{86}} + \frac{{300}}{{84}} + \frac{{300}}{{82}}\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 300\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right)\]
\[x = 300\]
Vậy \[x = 300\].
Lời giải
d) \[\left| {x + \frac{1}{{1.2.3}}} \right| + \left| {x + \frac{1}{{2.3.4}}} \right| + \left| {x + \frac{1}{{3.4.5}}} \right| + .... + \left| {x + \frac{1}{{18.19.20}}} \right| = 19x\]
Do \[\left| {x + \frac{1}{{1.2.3}}} \right| + \left| {x + \frac{1}{{2.3.4}}} \right| + \left| {x + \frac{1}{{3.4.5}}} \right| + .... + \left| {x + \frac{1}{{18.19.20}}} \right| \ge 0\] với mọi \[x\].
Do đó, \[19x \ge 0\], suy ra \[x \ge 0\].
Với mọi \[x \ge 0\], ta có:
\[x + \frac{1}{{1.2.3}} + x + \frac{1}{{2.3.4}} + x + \frac{1}{{3.4.5}} + .... + x + \frac{1}{{18.19.20}} = 19x\]
\[x + \frac{1}{{1.2.3}} + x + \frac{1}{{2.3.4}} + x + \frac{1}{{3.4.5}} + .... + x + \frac{1}{{18.19.20}} = 19x\]
\[18x + \left( {\frac{1}{{1.2.3}} + \frac{1}{{2.3.4}} + \frac{1}{{3.4.5}} + .... + \frac{1}{{18.19.20}}} \right) = 19x\]
\[x = \frac{1}{{1.2.3}} + \frac{1}{{2.3.4}} + \frac{1}{{3.4.5}} + .... + \frac{1}{{18.19.20}}\]
\[x = \frac{1}{2}\left( {\frac{1}{{1.2}} - \frac{1}{{2.3}} + \frac{1}{{2.3}} - \frac{1}{{3.4}} + \frac{1}{{3.4}} - \frac{1}{{4.5}}.... + \frac{1}{{18.19}} - \frac{1}{{19.20}}} \right)\]
\[x = \frac{1}{2}\left( {\frac{1}{{1.2}} - \frac{1}{{19.20}}} \right)\]
\[x = \frac{1}{2}\left( {\frac{1}{2} - \frac{1}{{380}}} \right)\]
\[x = \frac{1}{2}\left( {\frac{1}{2} - \frac{1}{{380}}} \right)\]
\[x = \frac{{189}}{{760}}\] (thỏa mãn)
Vậy \[x = \frac{{189}}{{760}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.