Phần III. Trắc nghiệm trả lời ngắn
Cho biểu thức \(T = 3x - 2y - 4\) với \(x\) và \(y\) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x - y - 1 \le 0\\x + 4y + 9 \ge 0\\x - 2y + 3 \ge 0\end{array} \right.\). Biết T đạt giá trị nhỏ nhất khi \(x = {x_0}\) và \(y = {y_0}\). Tính \(x_0^2 + y_0^2\).
Phần III. Trắc nghiệm trả lời ngắn
Cho biểu thức \(T = 3x - 2y - 4\) với \(x\) và \(y\) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x - y - 1 \le 0\\x + 4y + 9 \ge 0\\x - 2y + 3 \ge 0\end{array} \right.\). Biết T đạt giá trị nhỏ nhất khi \(x = {x_0}\) và \(y = {y_0}\). Tính \(x_0^2 + y_0^2\).
Quảng cáo
Trả lời:

Miền nghiệm của hệ là miền tam giác ABC với \(A\left( { - 5; - 1} \right);B\left( { - 1; - 2} \right);C\left( {5;4} \right)\).
Ta có \(T = 3x - 2y - 4\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C.
Với \(A\left( { - 5; - 1} \right)\) thì T = −17.
Với \(B\left( { - 1; - 2} \right)\) thì T = −3.
Với \(C\left( {5;4} \right)\) thì T = 3.
Vậy T đạt giá trị nhỏ nhất bằng −17 khi \(x = - 5;y = - 1\).
Do đó \({x_0} = - 5;{y_0} = - 1\). Do đó \(x_0^2 + y_0^2 = 26\).
Trả lời: 26.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số xe lớn và số xe nhỏ mà chủ trang trại cần thuê lần lượt là \(x;y\left( {x,y \in \mathbb{N}} \right)\).
Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}15x + 12y \ge 120\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\)
Miền nghiệm của hệ bất phương trình là miền trong của ngũ giác ABCDE (kể cả bờ) với \(A\left( {2;10} \right),B\left( {9;10} \right),C\left( {9;0} \right),D\left( {8;0} \right),E\left( {4;5} \right)\).
Theo đề bài ta có biểu thức biểu thị số tiền thuê xe là \(F = 500x + 350y\)(nghìn đồng).
Với A(2; 10) thì F = 4500;
Với B(9; 10) thì F = 8000;
Với C(9; 0) thì F = 4500;
Với D(8; 0) thì F = 4000;
Với E(4; 5) thì F = 3750.
Vậy số tiền thuê thấp nhất để chở 120 con bò sữa và 30 tấn thức ăn cho bò là 3750000 đồng khi thuê 4 xe lớn và 5 xe nhỏ.
Trả lời: 3750.
Lời giải
Gọi \(x;y\) lần lượt là số xe loại A và loại B cần phải thuê (\(x,y \in \mathbb{N}\)). Khi đó số tiền thuê xe là \(T = 4x + 3y\) (triệu đồng).
Theo bài ra ta có hệ phương trình
Miền nghiệm của hệ là miền đa giác ABCD kể cả biên (phần tô màu)
Ta thấy \(T = 4x + 3y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C, D.
Với \(A\left( {\frac{5}{2};9} \right)\) thì T = 37.
Với \(B\left( {10;9} \right)\) thì T = 67.
Với \(C\left( {10;2} \right)\) thì T = 46.
Với \(D\left( {5;4} \right)\) thì T = 32.
Vậy giá trị nhỏ nhất của T là 32 đạt tại \(x = 5;y = 4\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 3
A. \(\left\{ \begin{array}{l}x + y - 1 \ge 0\\2x - y + 4 \le 0\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hệ bất phương trình \(\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\) (I).
a) \(\left( {0;3} \right)\) là một nghiệm của (I).
b) Miền nghiệm của (I) chứa điểm (1; 3).
c) \(M\left( {x;y} \right)\) thuộc miền nghiệm của (I) thì \(2y - x \le 7\).
d) Giá trị nhỏ nhất của biểu thức \(F = y - x\) trên miền xác định là 1.
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hệ bất phương trình \(\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\) (I).
a) \(\left( {0;3} \right)\) là một nghiệm của (I).
b) Miền nghiệm của (I) chứa điểm (1; 3).
c) \(M\left( {x;y} \right)\) thuộc miền nghiệm của (I) thì \(2y - x \le 7\).
d) Giá trị nhỏ nhất của biểu thức \(F = y - x\) trên miền xác định là 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.