Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(7\)

Gọi số tự nhiên cần tìm là \(x\;\left( {x \in \mathbb{N}} \right).\)

\(x\) chia cho 4 dư 3 và chia cho 8 dư 7 nên \(x + 1\) chia hết cho 4 và 8. Do đó, \(\left( {x + 1} \right) \in {\rm{BC}}\left( {8,\;4} \right).\)

\(x + 1\)số tự nhiên nhỏ nhất (do \(x\) tự nhiên nhỏ nhất) nên \(x + 1\)\({\rm{BCNN}}\left( {8,\,4} \right).\)

\(8 \vdots 4\) nên \({\rm{BCNN}}\left( {8,\,4} \right) = 8.\) Do đó, \(x + 1 = 8\) nên \(x = 7\) (thỏa mãn).

Vậy số tự nhiên thỏa mãn yêu cầu bài toán là 7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.

\(x\) là số nhỏ nhất chia hết cho cả \(4;\;10\) nên \(x\)BCNN\(\left( {4,\;\,10} \right).\)

Ta có: \(4 = {2^2};\;\,10 = 2 \cdot 5\) nên BCNN\(\left( {4,\;10} \right) = {2^2} \cdot 5 = 20.\) Vậy \(x = 20.\)

b) Sai.

Ta có: \(16 = {2^4};{\rm{ }}24 = 3 \cdot {2^3}\) nên ƯCLN\(\left( {16,\;24} \right) = {2^3} = 8.\) Vậy \(y < 16.\)

c) Sai.

Ta có: \(8 = {2^3};\;\,20 = {2^2} \cdot 5.\) Do đó, BCNN\(\left( {x,\;y} \right) = {2^3} \cdot 5 = 40.\) Vậy BCNN\(\left( {x,\;y} \right) = 40.\)

d) Sai.

BCNN\(\left( {x,\;y} \right) = 40\) nên BC\(\left( {x,\;y} \right) = \left\{ {0;\;\,40;\;\,80;\;\,160;\;...} \right\}.\)

Lời giải

a) Sai.

Vì cứ 7 ngày, Hà đến siêu thị một lần và cứ 3 ngày, Hà đến thư viện một lần nên kể từ ngày hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7.

b) Đúng.

kể từ hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7. Mà số ngày là ít nhất nên kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung nhỏ nhất của 3 và 7.

c) Đúng.

Ta có: ƯCLN\(\left( {3,\;7} \right) = 1\) nên BCNN\(\left( {3,\;7} \right) = 3 \cdot 7 = 21.\)

Vậy kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là 21 ngày.

d) Sai.

BCNN\(\left( {3,\;7} \right) = 21\) nên BC\(\left( {3,\;7} \right) = \left\{ {0;\;\,21;\;\,42;\;...} \right\}.\)

Do đó, kể từ hôm nay, sau 40 ngày, Hà không thể lại vừa đi thư viện vừa đi siêu thị.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP