Quảng cáo
Trả lời:
Đáp án:
Đáp án: 3.
Do \(n\,\, \vdots \,\,n\) nên để \(\left( {n + 4} \right)\,\, \vdots \,\,n\) thì \(4\,\, \vdots \,\,n\).
Suy ra \(n \in \left\{ {1;\,\,2;\,\,4} \right\}\).
Vậy có ba số tự nhiên thỏa mãn yêu cầu bài toán.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(0\)
Vì \(15\,\, \vdots \,\,3\) nên \(\left( {13 \cdot 14 \cdot 15} \right)\,\, \vdots \,\,3.\)
Ta có: \(13 \cdot 14 \cdot 15 = 13 \cdot 7 \cdot 2 \cdot 15 = 13 \cdot 7 \cdot 30.\) Vì \(30\,\, \vdots \,\,10\) nên \(\left( {13 \cdot 7 \cdot 30} \right)\,\, \vdots \,\,10\) hay \(\left( {13 \cdot 14 \cdot 15} \right)\,\, \vdots \,\,10.\)
Do đó, \(13 \cdot 14 \cdot 15\)vừa chia hết cho 3 vừa chia hết cho 10.
Để \(P = 13 \cdot 14 \cdot 15 + a\) vừa chia hết cho 3 vừa chia hết cho 10 thì \(a\) chia hết cho 10.
Mà \(a\) là số tự nhiên nhỏ hơn 10 nên \(a = 0.\) Vậy \(a = 0.\)
Lời giải
Đáp án: \(1\)
Ta có: \(n + 7 = n + 2 + 5.\)
Để \(n + 7\) chia hết cho \(n + 2\) thì 5 chia hết cho \(n + 2.\)
Do đó, \(\left( {n + 2} \right) \in \)Ư\(\left( 5 \right) = \left\{ {1;\;{\rm{ }}5} \right\}.\)
Vì \(n \ge 0\) nên \(n + 2 \ge 2.\) Do đó, \(n + 2 = 5\) nên \(n = 3.\)
Vậy có một số tự nhiên \(n\) sao cho \(n + 7\) chia hết cho \(n + 2.\)
Câu 3
\(\left( {a + 2b} \right)\,\,\cancel{ \vdots }\,\,3.\)
\(\left( {a + b} \right)\,\, \vdots \,\,3.\)
\(\left( {a + b} \right)\,\,\cancel{ \vdots }\,\,3.\)
\(\left( {2a - b} \right)\,\,\cancel{ \vdots }\,\,3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.