Cho số \(n = \overline {a2b.} \) Biết rằng \(b\) là số nguyên tố nhỏ nhất và \(a\) hợp số nhỏ nhất.
a) \(b = 3.\)
b) \(a = 4.\)
c) Số \(n\) là số nguyên tố.
d) Phân tích \(n - 2\) ra thừa số nguyên tố ta được \(n - 2 = {2^2} \cdot 3 \cdot 5 \cdot 7.\)
Quảng cáo
Trả lời:
a) Sai.
Vì \(b\) là số nguyên tố nhỏ nhất nên \(b = 2.\)
b) Đúng.
Vì \(a\) là hợp số nhỏ nhất nên \(a = 4.\)
c) Sai.
Ta có: \(n = 422 = \left( {2 \cdot 211} \right) \vdots 2\) nên \(2\) là ước của 422. Do đó, \(n\) có nhiều hơn hai ước nên \(n\) là hợp số.
d) Đúng.
Ta có: \(n - 2 = 422 - 2 = 420.\) Phân tích 420 ra thừa số nguyên tố ta được: \(420 = {2^2} \cdot 3 \cdot 5 \cdot 7.\)
Vậy \(n - 2\) phân tích ra thừa số nguyên tố ta được \(n - 2 = {2^2} \cdot 3 \cdot 5 \cdot 7.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(8\)
\(\overline {6a} \) là hợp số khi \(a \in \left\{ {0;\,\,2;\,\,3;\,\,4;\,\,\,5;\;\,6;\;\,8;\;\,9} \right\}.\) Vậy có 8 chữ số \(a\) để \(\overline {6a} \) là hợp số.
Lời giải
Chọn đáp án B
Các ước của 20 là: \(1;\;{\rm{ }}2;\;{\rm{ }}4;\;{\rm{ }}5;\;{\rm{ }}10;\;{\rm{ }}20.\) Trong các số này, có hai số nguyên tố là \(2;\;{\rm{ }}5.\)
Do đó, số 20 có 2 ước nguyên tố.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.