Cho hai số \(a = 50;\;{\rm{ }}b = 15.\)
a) Bội chung nhỏ nhất của \(a\) và \(b\) bằng \(100.\)
b) Các bội chung của \(a\) và \(b\) là các số không chia hết cho 150.
c) Có bốn số tự nhiên là bội chung của \(a\) và \(b\) lớn hơn 100 và nhỏ hơn 500.
d) Quy đồng mẫu hai phân số \(\frac{1}{{50}}\) và \(\frac{2}{{15}}\) ta được hai phân số lần lượt là \(\frac{3}{{150}}\) và \(\frac{{20}}{{150}}.\)
Quảng cáo
Trả lời:

a) Sai.
Ta có: \(a = 50 = {5^2} \cdot 2;\;{\rm{ }}b = 15 = 5 \cdot 3.\) Do đó, \({\rm{BCNN}}\left( {a,\;b} \right) = {5^2} \cdot 2 \cdot 3 = 150.\) Vậy \({\rm{BCNN}}\left( {a,b} \right) = 150.\)
b) Sai.
Vì \({\rm{BCNN}}\left( {a,\;b} \right) = 150\) nên các bội chung của \(a\) và \(b\) là các số chia hết cho 150.
c) Sai.
Vì \({\rm{BCNN}}\left( {a,b} \right) = 150\) nên \({\rm{BC}}\left( {a,\;b} \right) = \left\{ {0;\;\,150;\;\,300;\;\,450;\;\,600;\;...} \right\}.\)
Vậy có bốn số tự nhiên là bội chung của \(a\) và \(b\) lớn hơn 100 và nhỏ hơn 500.
d) Đúng.
Vì \({\rm{BCNN}}\left( {a,\;{\rm{ }}b} \right) = 150\) nên mẫu chung của hai phân số \(\frac{1}{{50}}\) và \(\frac{2}{{15}}\) là 150.
Do đó, \(\frac{1}{{50}} = \frac{{1 \cdot 3}}{{50 \cdot 3}} = \frac{3}{{150}}\) và \(\frac{2}{{15}} = \frac{{2 \cdot 10}}{{15 \cdot 10}} = \frac{{20}}{{150}}.\)
Vậy quy đồng mẫu hai phân số \(\frac{1}{{50}}\) và \(\frac{2}{{15}}\) ta được hai phân số lần lượt là \(\frac{3}{{150}}\) và \(\frac{{20}}{{150}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
Ta có: \(8 = {2^3};\;{\rm{ }}12 = {2^2} \cdot 3;\;{\rm{ }}10 = 2 \cdot 5.\) Do đó, BCNN\(\left( {8;\;\,12;\;\,10} \right) = {2^3} \cdot 3 \cdot 5 = 120.\)
Vậy có thể lấy mẫu chung của ba phân số trên là 120.
b) Đúng.
Ta có: \(\frac{1}{8} = \frac{{1 \cdot 15}}{{8 \cdot 15}} = \frac{{15}}{{120}};\;\,\frac{5}{{12}} = \frac{{5 \cdot 10}}{{12 \cdot 10}} = \frac{{50}}{{120}};\;\,\frac{3}{{10}} = \frac{{3 \cdot 12}}{{10 \cdot 12}} = \frac{{36}}{{120}}.\)
Vậy quy đồng mẫu ba phân số \(\frac{1}{8};\;\,\frac{5}{{12}};\;\,\frac{3}{{10}}\) ta được lần lượt là: \(\frac{{15}}{{120}};\;\,\frac{{50}}{{120}};\;\,\frac{{36}}{{120}}.\)
c) Đúng.
\(\frac{1}{8} + \frac{5}{{12}} = \frac{{15}}{{120}} + \frac{{50}}{{120}} = \frac{{65}}{{120}} = \frac{{65:5}}{{120:5}} = \frac{{13}}{{24}}.\) Vậy tổng của hai phân số \(\frac{1}{8}\) và \(\frac{5}{{12}}\) bằng \(\frac{{13}}{{24}}.\)
d) Sai.
Ta có: \(\frac{1}{8} + \frac{5}{{12}} - \frac{3}{{10}} = \frac{{65}}{{120}} - \frac{{36}}{{120}} = \frac{{29}}{{120}}.\)
Vậy tổng của hai phân số \(\frac{1}{8}\) và \(\frac{5}{{12}}\) lớn hơn phân số \(\frac{3}{{10}}\) là \(\frac{{29}}{{120}}.\)
Lời giải
a) Sai.
Vì cứ 7 ngày, Hà đến siêu thị một lần và cứ 3 ngày, Hà đến thư viện một lần nên kể từ ngày hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7.
b) Đúng.
Vì kể từ hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7. Mà số ngày là ít nhất nên kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung nhỏ nhất của 3 và 7.
c) Đúng.
Ta có: ƯCLN\(\left( {3,\;7} \right) = 1\) nên BCNN\(\left( {3,\;7} \right) = 3 \cdot 7 = 21.\)
Vậy kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là 21 ngày.
d) Sai.
Vì BCNN\(\left( {3,\;7} \right) = 21\) nên BC\(\left( {3,\;7} \right) = \left\{ {0;\;\,21;\;\,42;\;...} \right\}.\)
Do đó, kể từ hôm nay, sau 40 ngày, Hà không thể lại vừa đi thư viện vừa đi siêu thị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.