Câu hỏi:

13/10/2025 47 Lưu

Cho hai số tự nhiên \(x,\;y\;\left( {x,\;y \ne 0} \right)\) thỏa mãn \(x\) là số nhỏ nhất chia hết cho cả \(4;\;10\) và \(y\) là ước chung lớn nhất của 16 và 24.

          a) \(x = 20.\)

          b) \(y > 16.\)

          c) BCNN\(\left( {x,\;y} \right) = 80.\)

          d) BC\(\left( {x,{\rm{ }}y} \right) = \left\{ {0;\;\,80;\;\,160;\;\,240;\;\,320;...} \right\}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Vì \(x\) là số nhỏ nhất chia hết cho cả \(4;\;10\) nên \(x\) là BCNN\(\left( {4,\;\,10} \right).\)

Ta có: \(4 = {2^2};\;\,10 = 2 \cdot 5\) nên BCNN\(\left( {4,\;10} \right) = {2^2} \cdot 5 = 20.\) Vậy \(x = 20.\)

b) Sai.

Ta có: \(16 = {2^4};{\rm{ }}24 = 3 \cdot {2^3}\) nên ƯCLN\(\left( {16,\;24} \right) = {2^3} = 8.\) Vậy \(y < 16.\)

c) Sai.

Ta có: \(8 = {2^3};\;\,20 = {2^2} \cdot 5.\) Do đó, BCNN\(\left( {x,\;y} \right) = {2^3} \cdot 5 = 40.\) Vậy BCNN\(\left( {x,\;y} \right) = 40.\)

d) Sai.

Vì BCNN\(\left( {x,\;y} \right) = 40\) nên BC\(\left( {x,\;y} \right) = \left\{ {0;\;\,40;\;\,80;\;\,160;\;...} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(240\)

Vì số học sinh 6 khi xếp thành hàng 6, hàng 8 và hàng 10 đều vừa đủ nên số học sinh khối 6 thuộc bội chung của \(6,\;8,\;10.\)

Ta có: \(6 = 2 \cdot 3;\;{\rm{ }}8 = {2^3};\;{\rm{ }}10 = 2 \cdot 5\) nên BCNN\(\left( {6,\;\,8,\;\,10} \right) = {2^3} \cdot 5 \cdot 3 = 120.\)

Do đó, BC\(\left( {6,\;\,8,\;\,10} \right) = \left\{ {0;\;\,120;\;\,240;\;\,360;\;...} \right\}.\)

Mà số học sinh khối 6 từ 200 học sinh đến 300 học sinh nên số học sinh khối 6 là 240 học sinh.

Vậy số học sinh của 6 là 240 học sinh.

Lời giải

a) Đúng

Vì \(a\) là số có hai chữ số nhỏ nhất chia hết cho 3 nên ta có \(a\) là bội của 3.

Mà \({\rm{B}}\left( 3 \right) = \left\{ {0;\,\,3;\,\,6;\,\,9;\,\,12;\,\,15;....} \right\}\).

Do đó, \(a = 12\).

b) Sai.

Vì \(b\) là bội của 4 nên ta có: \({\rm{B}}\left( 4 \right) = \left\{ {0;\;\,4;\,\,\,8;\,\,\,16;\;\,32;\;\,48;\;\,64;\;.....} \right\}.\)

 Mà \(12 < b < 20\) nên \(b = 16.\)

Ta có: \({\rm{B}}\left( {16} \right) = \left\{ {0;\;\,16;\;\,32;\;\,48;\;\,64;\;\,80;\;\,96;\;\,112;\;...} \right\}.\)

c) Đúng.

Ta có: \({\rm{B}}\left( {12} \right) = \left\{ {0;\;\,12;\;\,24;\;\,36;\;\,48;\;\,60;\;\,72;\;\,84;\;...} \right\}.\)

          \({\rm{B}}\left( {16} \right) = \left\{ {0;\;\,16;\;\,32;\;\,48;\;\,64;\;\,80;\;\,96;\;\,112;\;...} \right\}.\)

Từ đây,  suy ra: \({\rm{BCNN}}\left( {12,\;{\rm{ }}16} \right) = 48\) hay \({\rm{BCNN}}\left( {a,\;b} \right) = 48.\)

d) Đúng.

Vì \({\rm{BCNN}}\left( {12,\;{\rm{ }}16} \right) = 48\) nên \({\rm{BC}}\left( {12,\;16} \right) = {\rm{B}}\left( {48} \right) = \left\{ {0;\;{\rm{ }}48;\;{\rm{ }}96;\;{\rm{ }}144;\;{\rm{ }}192...} \right\}.\)

Vậy có bốn bội chung của 12 và 16 nhỏ hơn 150 hay có bốn bội chung của \(a\) và \(b\)nhỏ hơn 150.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP