Câu hỏi:

07/10/2025 9 Lưu

Cho \(a\) là số có hai chữ số nhỏ nhất chia hết cho 3; \(b\) là bội của 4 và \(12 < b < 20\).

(a)\(a = 12.\)

(b)\({\rm{B}}\left( b \right) = \left\{ {0;\,\,4;\,\,\,8;\,\,\,12;\,\,\,16} \right\}.\)

(c)\({\rm{BCNN}}\left( {a,\;b} \right) = 48.\)

(d) Có bốn bội chung của \(a\) và \(b\)nhỏ hơn 150.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

Vì \(a\) là số có hai chữ số nhỏ nhất chia hết cho 3 nên ta có \(a\) là bội của 3.

Mà \({\rm{B}}\left( 3 \right) = \left\{ {0;\,\,3;\,\,6;\,\,9;\,\,12;\,\,15;....} \right\}\).

Do đó, \(a = 12\).

b) Sai.

Vì \(b\) là bội của 4 nên ta có: \({\rm{B}}\left( 4 \right) = \left\{ {0;\;\,4;\,\,\,8;\,\,\,16;\;\,32;\;\,48;\;\,64;\;.....} \right\}.\)

Mà \(12 < b < 20\) nên \(b = 16.\)

Ta có: \({\rm{B}}\left( {16} \right) = \left\{ {0;\;\,16;\;\,32;\;\,48;\;\,64;\;\,80;\;\,96;\;\,112;\;...} \right\}.\)

c) Đúng.

Ta có: \({\rm{B}}\left( {12} \right) = \left\{ {0;\;\,12;\;\,24;\;\,36;\;\,48;\;\,60;\;\,72;\;\,84;\;...} \right\}.\)

\({\rm{B}}\left( {16} \right) = \left\{ {0;\;\,16;\;\,32;\;\,48;\;\,64;\;\,80;\;\,96;\;\,112;\;...} \right\}.\)

Từ đây, suy ra:\({\rm{BCNN}}\left( {12,\;{\rm{ }}16} \right) = 48\) hay \({\rm{BCNN}}\left( {a,\;b} \right) = 48.\)

d) Đúng.

Vì \({\rm{BCNN}}\left( {12,\;{\rm{ }}16} \right) = 48\) nên\({\rm{BC}}\left( {12,\;16} \right) = {\rm{B}}\left( {48} \right) = \left\{ {0;\;{\rm{ }}48;\;{\rm{ }}96;\;{\rm{ }}144;\;{\rm{ }}192...} \right\}.\)

Vậy có bốn bội chung của 12 và 16 nhỏ hơn 150 hay có bốn bội chung của \(a\) và \(b\)nhỏ hơn 150.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai.

Ta có: \(a = 50 = {5^2} \cdot 2;\;{\rm{ }}b = 15 = 5 \cdot 3.\) Do đó, \({\rm{BCNN}}\left( {a,\;b} \right) = {5^2} \cdot 2 \cdot 3 = 150.\) Vậy \({\rm{BCNN}}\left( {a,b} \right) = 150.\)

b) Sai.

Vì \({\rm{BCNN}}\left( {a,\;b} \right) = 150\) nên các bội chung của \(a\) và \(b\) là các số chia hết cho 150.

c) Sai.

Vì \({\rm{BCNN}}\left( {a,b} \right) = 150\) nên \({\rm{BC}}\left( {a,\;b} \right) = \left\{ {0;\;\,150;\;\,300;\;\,450;\;\,600;\;...} \right\}.\)

Vậy có bốn số tự nhiên là bội chung của \(a\) và \(b\) lớn hơn 100 và nhỏ hơn 500.

d) Đúng.

Vì \({\rm{BCNN}}\left( {a,\;{\rm{ }}b} \right) = 150\) nên mẫu chung của hai phân số \(\frac{1}{{50}}\) và \(\frac{2}{{15}}\) là 150.

Do đó, \(\frac{1}{{50}} = \frac{{1 \cdot 3}}{{50 \cdot 3}} = \frac{3}{{150}}\) và \(\frac{2}{{15}} = \frac{{2 \cdot 10}}{{15 \cdot 10}} = \frac{{20}}{{150}}.\)

Vậy quy đồng mẫu hai phân số \(\frac{1}{{50}}\) và \(\frac{2}{{15}}\) ta được hai phân số lần lượt là \(\frac{3}{{150}}\) và \(\frac{{20}}{{150}}.\)

Lời giải

a) Sai.

Vì cứ 7 ngày, Hà đến siêu thị một lần và cứ 3 ngày, Hà đến thư viện một lần nên kể từ ngày hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7.

b) Đúng.

Vì kể từ hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7. Mà số ngày là ít nhất nên kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung nhỏ nhất của 3 và 7.

c) Đúng.

Ta có: ƯCLN\(\left( {3,\;7} \right) = 1\) nên BCNN\(\left( {3,\;7} \right) = 3 \cdot 7 = 21.\)

Vậy kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là 21 ngày.

d) Sai.

Vì BCNN\(\left( {3,\;7} \right) = 21\) nên BC\(\left( {3,\;7} \right) = \left\{ {0;\;\,21;\;\,42;\;...} \right\}.\)

Do đó, kể từ hôm nay, sau 40 ngày, Hà không thể lại vừa đi thư viện vừa đi siêu thị.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

BCNN\(\left( {m,\;n} \right) = m \cdot n.\)

BCNN\(\left( {m,\;n} \right) = m + n.\)

BCNN\(\left( {m,\;n} \right) = m.\)

BCNN\(\left( {m,\;n} \right) = n.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP