Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là \(X\) và \(Y\). Mỗi gói thực phẩm \(X\) chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin \(B\). Mỗi gói thực phẩm \(Y\) chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin \(B\). Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin \(B\). Mỗi ngày không được dùng quá 12 gói mỗi loại. Khi đó:
a) Hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\)
b) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là một ngũ giác
c) Biết 1 gói thực phẩm loại \(X\) giá 20000 đồng, 1 gói thực phẩm loại \(Y\) giá 25000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\) để chi phí mua là ít nhất
d) Điểm \(\left( {10;8} \right)\) không thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)
Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là \(X\) và \(Y\). Mỗi gói thực phẩm \(X\) chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin \(B\). Mỗi gói thực phẩm \(Y\) chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin \(B\). Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin \(B\). Mỗi ngày không được dùng quá 12 gói mỗi loại. Khi đó:
a) Hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\)
b) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là một ngũ giác
c) Biết 1 gói thực phẩm loại \(X\) giá 20000 đồng, 1 gói thực phẩm loại \(Y\) giá 25000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\) để chi phí mua là ít nhất
d) Điểm \(\left( {10;8} \right)\) không thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)
Quảng cáo
Trả lời:

a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
a) Gọi \(x,y\) lần lượt là số gói thực phẩm loại \(X\), loại \(Y\) mà bà Lan cần dùng trong một ngày. Ta có: \(0 \le x \le 12,0 \le y \le 12\).
Số đơn vị canxi được cung cấp là: \(20x + 20y\). Ta có: \(20x + 20y \ge 240\) hay \(x + y \ge 12\).
Số đơn vị sắt được cung cấp là: \(20x + 10y\). Ta có: \(20x + 10y \ge 160\) hay \(2x + y \ge 16\).
Số đơn vị vitamin \(B\) được cung cấp là: \(10x + 20y\). Ta có: \(10x + 20y \ge 140\) hay \(x + 2y \ge 14\).
Ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\)
b) Miền nghiệm của hệ bất phương trình là miền ngũ giác \(ABCDE\) với \(A(12;12)\), \(B(2;12),C(4;8),D(10;2),E(12;1)\)
c) Số tiền bà Lan dùng để mua các gói thực phẩm \(X,Y\) trong một ngày là: \(T = 20x + 25y\) (nghìn đồng).
Tính giá trị của \(T\) tại các cặp số \((x;y)\) là toạ độ các đỉnh trên rồi so sánh các giá trị đó, ta được \(T\) đạt giá trị nhỏ nhất bằng 250 nghìn đồng tại \(x = 10;y = 2\).
Vậy để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) nhưng với chi phí thấp nhất thì mỗi ngày bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\).
d) Điểm \(\left( {10;8} \right)\) thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong mặt phẳng \(Oxy\), cho tứ giác \(ABCD\) có \(A( - 3;0);B(0;2);C(3;1);D(3; - 2)\). Tìm tất cả các giá trị của \(m\) sao cho điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) kể cả 4 cạnh.
Nhận thấy hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình gồm 4 bất phương trình có miền nghiệm là nửa mặt phẳng chứa điểm \(O(0;0)\) và lần lượt có các bờ là các đường thẳng \(AB,BC,CD\) và \(DA\).
Phương trình đường thẳng \(AB\):
\(\frac{{x + 3}}{{0 - ( - 3)}} = \frac{{y - 0}}{{2 - 0}} \Leftrightarrow 2x - 3y + 6 = 0.{\rm{ }}\)
Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(AB\) (tính cả bờ \(AB\)) và chứa điểm \(O\) là \(2x - 3y + 6 \ge 0\).
Phương trình đường thẳng \(BC:\frac{{x - 0}}{{3 - 0}} = \frac{{y - 2}}{{1 - 2}} \Leftrightarrow x + 3y - 6 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(BC\) (tính cả bờ \(BC\)) và chứa điểm \(O\) là \(x + 3y - 6 \le 0\).
Phương trình đường thẳng \(CD:x - 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(CD\) (tính cả bờ \(CD\)) và chứa điểm \(O\) là \(x - 3 \le 0\).
Phương trình đường thẳng \(DA:\frac{{x + 3}}{{3 - ( - 3)}} = \frac{{y - 0}}{{ - 2 - 0}} \Leftrightarrow x + 3y + 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(DA\) (tính cả bờ \(DA\) ) và chứa điểm \(O\) là \(x + 3y + 3 \ge 0\).
Hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - 3y + 6 \ge 0}\\{x + 3y - 6 \le 0}\\{x - 3 \le 0}\\{x + 3y + 3 \ge 0}\end{array}} \right.(1)\)
Điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) tính cả 4 cạnh của nó khi và chỉ khi \((m;m - 1)\) là một nghiệm của hệ \((1)\), tức là
\(\left\{ {\begin{array}{*{20}{l}}{2m - 3(m - 1) + 6 \ge 0}\\{m + 3(m - 1) - 6 \le 0}\\{m - 3 \le 0}\\{m + 3(m - 1) + 3 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \le 9}\\{m \le \frac{9}{4}}\\{m \le 3}\\{m \ge 0}\end{array} \Leftrightarrow 0 \le m \le \frac{9}{4}} \right.} \right.\)
Vậy các giá trị của \(m\) thỏa mãn là \(0 \le m \le \frac{9}{4}\).
Lời giải
Điều kiện: \(0 \le x \le 2;0 \le y \le 1,5\)
Khi đó số protein có được là \(800x + 600y\) và số lipit có được là \(200x + 400y\)
Vì gia đình đó cần ít nhất 1200 đơn vị protein và 800 đơn vị lipit trong thức ăn mỗi ngày nên điều kiện tương ứng là:
\(800x + 600y \ge 1200 \Leftrightarrow 4x + 3y \ge 6{\rm{ v\`a }}200x + 400y \ge 800 \Leftrightarrow x + 2y \ge 4\)
Ta có hệ bất phương trình sau:
\(\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 2}\\{0 \le y \le 1,5}\\{4x + 3y \ge 6}\\{x + 2y \ge 4}\end{array}} \right.\)(*)
Miền nghiệm của hệ trên là miền ngũ giác \(ABCDE\) kể cả các cạnh của ngũ giác.
Chi phí để mua \(x\;kg\) thịt bò và \(y\;kg\) thịt lợn là \(T = 200x + 100y\) (nghìn đồng).
Bài toán trở thành tìm giá trị nhỏ nhất của \(T(x;y) = 200x + 100y\) trên miền nghiệm của hệ \((*)\).
Tìm tọa độ các điểm \(A,B,C,D,E\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{4x + 5y - 6 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{3}{8}}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\).
Tọa độ điềm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 0}\end{array}} \right.\). Vậy \(C(2;0)\).
Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{x + 2y - 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}} \right.} \right.\). Vậy \(D(2;1)\).
Tọa độ điểm \(E\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 4 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(E\left( {1;\frac{3}{2}} \right)\).
Ta thấy \(T(x;y) = 200x + 100y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D,E\).
Tại \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\) thì \(T = 200 \cdot \frac{3}{8} + 100 \cdot \frac{3}{2} = 225\) (nghìn đồng).
Tại \(B\left( {\frac{3}{2};0} \right)\) thì \(T = 200 \cdot \frac{3}{2} + 100 \cdot 0 = 300\) (nghìn đồng).
Tại \(C(2;0)\) thì \(T = 200.2 + 100.0 = 400\) (nghìn đồng).
Tại \(D(2;1)\) thì \(T = 200.2 + 100.1 = 500\) (nghìn đồng).
Tại \(E\left( {1;\frac{3}{2}} \right)\) thì \(T = 200.1 + 100 \cdot \frac{3}{2} = 350\) (nghìn đồng).
Như vậy để chi phí bỏ ra thấp nhất mà vẫn đảm bảo nhu cầu dinh dưỡng khi \(x = \frac{3}{8}\) và \(y = \frac{3}{2} \Rightarrow 4{x^2} + {y^2} = 4 \cdot {\left( {\frac{3}{8}} \right)^2} + {\left( {\frac{3}{2}} \right)^2} = \frac{{45}}{{16}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.