Câu hỏi:

17/10/2025 13 Lưu

Một khối bê tông có dạng như hình dưới đây. Phần dưới của khối bê tông có dạng hình hộp chữ nhật, đáy là hình vuông có cạnh \(4{\rm{ dm,}}\) chiều cao \({\rm{2,5 dm}}{\rm{.}}\) Phần trên của khối bê tông có dạng hình chóp tứ giác đều, chiều cao \({\rm{10 dm}}{\rm{.}}\)

Một khối bê tông có dạng như hình dưới đây. Phần dưới của khối bê tông có dạng hình hộ (ảnh 1)

Khi đó,

          a) Thể tích phần khối bê tông dạng hình hộp chữ nhật là \(40{\rm{ d}}{{\rm{m}}^{\rm{3}}}.\)

          b) Thể tích phần khối bê tông dạng hình chóp lớn hơn \(50{\rm{ d}}{{\rm{m}}^{\rm{3}}}.\)

          c) Tỉ lệ thể tích khối bê tông dạng hình hộp chữ nhật so với khối bê tông hình chóp là \(\frac{3}{4}.\)

          d) Thể tích cả khối bê tông lớn hơn \(95{\rm{ d}}{{\rm{m}}^{\rm{3}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Phần dưới của khối bê tông có dạng hình hộp chữ nhật, đáy là hình vuông có cạnh \(4{\rm{ dm,}}\) chiều cao \({\rm{2,5 dm}}{\rm{.}}\)

Do đó, thể tích của khối bê tông này là: \({V_1} = S.h = {4^2}.2,5 = 40{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\)

b) Đúng.

Phần trên của khối bê tông có dạng hình chóp tứ giác đều có độ dài cạnh của mặt đáy là \(4{\rm{ dm,}}\) chiều cao là \({\rm{10 dm}}{\rm{.}}\)

Do đóm thể tích của khối bê tông hình chóp này là: \({V_2} = \frac{1}{3}S.h = \frac{1}{3}{.4^2}.10 = \frac{{160}}{3}{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).

c) Đúng.

Tỉ lệ thể tích khối bê tông dạng hình hộp chữ nhật so với khối bê tông hình chóp là

\(40:\frac{{160}}{3} = \frac{3}{4}\).

d) Sai.

Vậy thể tích của khối bê tông trên gồm hai khối là khối hình hộp chữ nhật và khối hình chóp tứ giác đều.

Vậy thể tích của khối bê tông này là: \(40 + \frac{{160}}{3} = \frac{{280}}{3} \approx 93,3{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.

Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\) Gọi đường cao của mặt đáy là \(CH\), ta có \(CH\) đồng thời là đường trung tuyến.

\(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)

b) Đúng.

Xét tam giác \(BHC\) vuông tại \(H\). Theo định lý Pythagore ta có: \(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\) suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

c) Sai.

\(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Xét tam giác \(SHG\) vuông tại \(G\). Theo định lý Pythagore, ta có:

\(S{H^2} = S{G^2} + H{G^2}\)

\(S{H^2} = {90^2} + {30^2} = 9000\)

Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\)

d) Đúng.

Vậy diện tích xung quanh của hình chóp là \(S = 3 \cdot \frac{1}{2} \cdot 60 \cdot 30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Câu 2

A. 4 mặt, 4 cạnh.          
B. 6 mặt, 4 cạnh.          
C. 4 mặt, 6 cạnh. 
D. 6 mặt, 6 cạnh.

Lời giải

Đáp án đúng là: C

Hình chóp tam giác đều có 4 mặt, 6 cạnh.

Câu 3

A. Nửa chu vi đáy nhân với đường cao.            
B. Chu vi đáy nhân với chiều cao.          
C. Nửa chu vi đáy nhân với cạnh bên.               
D. Tổng diện tích tất cả các mặt bên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. đường cao.               
B. cạnh bên.                  
C. cạnh đáy.   
D. đường chéo.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP