Câu hỏi:

17/10/2025 65 Lưu

Lớp 10A có 45 học sinh trong đó có 20 học sinh nam và 25 học sinh nữ. Trong bài kiểm tra môn Toán cả lớp có 22 học sinh đạt điểm giỏi (trong đó có 10 học sinh nam và 12 học sinh nữ). Giáo viên chọn ngẫu nhiên một học sinh từ danh sách lớp. Tính xác suất để giáo viên chọn được một học sinh đạt điểm giỏi môn Toán biết học sinh đó là học sinh nam.

A.

\(\frac{1}{2}\).

B.

\(\frac{4}{5}\).

C.

\(\frac{3}{5}\).

D.

\(\frac{4}{{15}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng : A

Gọi \(A\) là biến cố “Chọn được một học sinh nam”.

Gọi \(B\) là biến cố “Chọn được một học sinh đạt điểm giỏi môn Toán”.

\(A \cap B\)là biến cố “Chọn được một học sinh đạt điểm giỏi môn Toán biết học sinh đó là học sinh nam”.

Ta có \(P\left( {A \cap B} \right) = \frac{{10}}{{45}} = \frac{2}{9}\); \(P\left( A \right) = \frac{{20}}{{45}} = \frac{4}{9}\).

\(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{1}{2}\).

Vậy xác suất để giáo viên chọn được một học sinh đạt điểm giỏi môn Toán biết học sinh đó là học sinh nam là \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng : D

Gọi \[A\] là biến cố “người mua hàng là phụ nữ”

\[B\] là biến cố “người mua hàng cần nhân viên tư vấn”, ta cần tính \[P\left( {B|A} \right)\].

\[P\left( A \right) = 0,86\,\,;\,P\left( {AB} \right) = 0,25\]

Vậy \[P\left( {B|A} \right) = \frac{{0,25}}{{0,86}} = \frac{{25}}{{86}}\].