Câu hỏi:

17/10/2025 24 Lưu

Cho hai biến cố \[A\] và \[B\], với \[P\left( A \right) = 0,2\], \[P\left( {B|A} \right) = 0,7\], \[P\left( {B|\overline A } \right) = 0,15\]. Tính \[P\left( {A|B} \right)\].

A.

\[\frac{7}{{13}}\].

B.

\[\frac{6}{{13}}\].

C.

\[\frac{4}{{13}}\].

D.

\[\frac{9}{{13}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng : A

Ta có: \[P\left( A \right) = 0,2\]\[ \Rightarrow P\left( {\overline A } \right) = 0,8\], \[P\left( {B|A} \right) = 0,7\], \[P\left( {B|\overline A } \right) = 0,15\].

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\]\[ \Rightarrow P\left( B \right) = 0,2.0,7 + 0,8.0,15 = 0,26\].

Theo công thức Bayes: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\]\[ \Rightarrow P\left( {A|B} \right) = \frac{{0,2.0,7}}{{0,26}} = \frac{7}{{13}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng : D

Gọi \[A\] là biến cố “người mua hàng là phụ nữ”

\[B\] là biến cố “người mua hàng cần nhân viên tư vấn”, ta cần tính \[P\left( {B|A} \right)\].

\[P\left( A \right) = 0,86\,\,;\,P\left( {AB} \right) = 0,25\]

Vậy \[P\left( {B|A} \right) = \frac{{0,25}}{{0,86}} = \frac{{25}}{{86}}\].