Câu hỏi:

17/10/2025 20 Lưu

Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất \[35\% ,\]máy II sản xuất \[65\% \]tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là \[0,3\% \]và \[0,7\% .\]Chọn ngẫu nhiên \(1\) sản phẩm từ kho. Tính xác suất để chọn được phế phẩm?

A.

\(0,0056\).

B.

\(0,0065\).

C.

\(0,065\).

D.

\(0,056\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng : A

Gọi \({A_1}\)là biến cố “Sản phẩm được chọn do máy I sản xuất”;

\({A_2}\) là biến cố “Sản phẩm được chọn do máy II sản xuất”;

B là biến cố “Sản phẩm được chọn là phế phẩm”.

Ta có \(P\left( {{A_1}} \right) = 0,35\), \(P\left( {{A_2}} \right) = 0,65\), \(P\left( {B|{A_1}} \right) = 0,003\), \(P\left( {B|{A_2}} \right) = 0,007\).

Khi đó, \(P\left( B \right) = P\left( {B|{A_1}} \right).P\left( {{A_1}} \right) + P\left( {B|{A_2}} \right).P\left( {{A_2}} \right) = 0,0056\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng : D

Gọi \[A\] là biến cố “người mua hàng là phụ nữ”

\[B\] là biến cố “người mua hàng cần nhân viên tư vấn”, ta cần tính \[P\left( {B|A} \right)\].

\[P\left( A \right) = 0,86\,\,;\,P\left( {AB} \right) = 0,25\]

Vậy \[P\left( {B|A} \right) = \frac{{0,25}}{{0,86}} = \frac{{25}}{{86}}\].