Câu hỏi:

17/10/2025 25 Lưu

Người ta điều tra thấy ở một địa phương nọ có \(3\% \) tài xế sử dụng điện thoại di động khi lái xe. Người ta nhận thấy khi tài xế lái xe gây ra tai nạn thì có \(21\% \) là do tài xế sử dụng điện thoại. Hỏi việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên bao nhiêu lần?

A.

\(3\).

B.

\(7\).

C.

\(5\).

D.

\(6\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng : B

Ta gọi \(A\) là biến cố “Tài xế sử dụng điện thoại di động khi lái xe”, \(B\) là biến cố “Tài xế lái xe gây tai nạn”.

Khi đó \(P\left( A \right) = 3\% = 0,03,\,P\left( {A|B} \right) = 21\% = 0,21.\,\)

Theo công thức Bayes: \[P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}} \Rightarrow \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,21}}{{0,03}} = 7.\]

Vậy việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên \[7\] lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng : D

Gọi \[A\] là biến cố “người mua hàng là phụ nữ”

\[B\] là biến cố “người mua hàng cần nhân viên tư vấn”, ta cần tính \[P\left( {B|A} \right)\].

\[P\left( A \right) = 0,86\,\,;\,P\left( {AB} \right) = 0,25\]

Vậy \[P\left( {B|A} \right) = \frac{{0,25}}{{0,86}} = \frac{{25}}{{86}}\].