Câu hỏi:

17/10/2025 43 Lưu

Một đội bắn súng gồm có 8 nam và 2 nữ. Xác suất bắn trúng của các xạ thủ nam là 0,8 còn của các xạ thủ nữ là 0,9. Chọn ngẫu nhiên một xạ thủ bắn một viên đạn và xạ thủ đó đã bắn trúng. Tính xác suất (làm tròn đến hàng phần trăm) để xạ thủ đó là nữ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,22

Gọi \[A\] là biến cố “Xạ thủ được chọn là nữ”, suy ra \[\bar A\] là biến cố “xạ thủ được chọn là nam”.

Gọi \[B\] là biến cố “xạ thủ được chọn bắn trúng”.

Theo giả thiết ta có: \[P\left( A \right) = \frac{2}{{2 + 8}} = \frac{1}{5} \Rightarrow P\left( {\bar A} \right) = \frac{4}{5};\,\,P\left( {B|A} \right) = 0,9;\,\,P\left( {B|\bar A} \right) = 0,8\].

Áp dụng công thức xác suất toàn phần ta có:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{1}{5}.0,9 + \frac{4}{5}.0,8 = 0,82\].

Xác suất để xạ thủ được chọn ra bắn trúng đó là nữ là \[P\left( {A|B} \right)\].

Theo công thức Bayes, ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{5}.0,9}}{{0,82}} = \frac{9}{{41}} \approx 0,22\].

Vậy xác suất để xạ thủ bắn trúng đó là nữ là \[0,22\].

Đáp án: 0,22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng : D

Gọi \[A\] là biến cố “người mua hàng là phụ nữ”

\[B\] là biến cố “người mua hàng cần nhân viên tư vấn”, ta cần tính \[P\left( {B|A} \right)\].

\[P\left( A \right) = 0,86\,\,;\,P\left( {AB} \right) = 0,25\]

Vậy \[P\left( {B|A} \right) = \frac{{0,25}}{{0,86}} = \frac{{25}}{{86}}\].