Cho hình chóp \[S.ABCD\], đáy là tứ giác \[ABCD\]. Biết \[AB\] cắt \[CD\] tại \[E\], \[AC\] cắt \[BD\] tại \[F\] trong mặt phẳng đáy. Xét tính đúng sai của các khẳng định sau:
a) Đường thẳng \[FE\] nằm trong mặt phẳng \[\left( {ABCD} \right).\]
b) \[AB\] là giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right).\]
c) \[SF\] là giao điểm của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\], \[SE\] là giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right).\]
d) Gọi \[G = FE \cap AD\]. Khi đó, \[SG\] là giao tuyến của mặt phẳng \[\left( {SFE} \right)\] và mặt phẳng \[\left( {SAD} \right)\].
Cho hình chóp \[S.ABCD\], đáy là tứ giác \[ABCD\]. Biết \[AB\] cắt \[CD\] tại \[E\], \[AC\] cắt \[BD\] tại \[F\] trong mặt phẳng đáy. Xét tính đúng sai của các khẳng định sau:
a) Đường thẳng \[FE\] nằm trong mặt phẳng \[\left( {ABCD} \right).\]
b) \[AB\] là giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right).\]
c) \[SF\] là giao điểm của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\], \[SE\] là giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right).\]
d) Gọi \[G = FE \cap AD\]. Khi đó, \[SG\] là giao tuyến của mặt phẳng \[\left( {SFE} \right)\] và mặt phẳng \[\left( {SAD} \right)\].
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) Đ |
b) Đ |
c) S |
d) Đ |
![Cho hình chóp \[S.ABCD\], đáy là tứ giác \[A (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/21-1760769691.png)
a) Ta có: \[E = AB \cap CD\] \[ \Rightarrow E \in AB,AB \subset \left( {ABCD} \right)\] \[ \Rightarrow E \in \left( {ABCD} \right).\]
Tương tự: \[F = AC \cap BD\]\[ \Rightarrow F \in AC,AC \subset \left( {ABCD} \right)\]\[ \Rightarrow F \in \left( {ABCD} \right).\]
Do đó, \[FE \subset \left( {ABCD} \right).\]
b) Dễ thấy \[\left\{ \begin{array}{l}A \in \left( {SAB} \right) \cap \left( {ABCD} \right)\\B \in \left( {SAB} \right) \cap \left( {ABCD} \right)\end{array} \right.\]\[ \Rightarrow AB = \left( {SAB} \right) \cap \left( {ABCD} \right)\].
Vậy \[AB\] là giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right).\]
c) Ta có: \[\left\{ \begin{array}{l}E \in \left( {SAB} \right) \cap \left( {SCD} \right)\\S \in \left( {SAB} \right) \cap \left( {SCD} \right)\end{array} \right.\]\[ \Rightarrow SE = \left( {SAB} \right) \cap \left( {SCD} \right).\]
\[\left\{ \begin{array}{l}F \in \left( {SAC} \right) \cap \left( {SBD} \right)\\S \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right.\]\[ \Rightarrow SF = \left( {SAC} \right) \cap \left( {SBD} \right).\]
Do đó, \[SE\] là giao điểm của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\], \[SF\] là giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right).\]
d) Ta có: \[\left\{ \begin{array}{l}G \in FE,{\rm{ }}FE \subset \left( {SEF} \right)\\G \in AD,AD \subset \left( {SAD} \right)\end{array} \right.\] \[ \Rightarrow G \in \left( {SEF} \right) \cap \left( {SAD} \right).\]
Mà \[S \in \left( {SEF} \right) \cap \left( {SAD} \right).\]
Vậy \[SG = \left( {SEF} \right) \cap \left( {SAD} \right).\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) S |
b) Đ |
c) S |
d) Đ |
Gọi \[r\] là lãi suất gửi theo năm, khi đó \[r = 7\% = 0,07\].
Sau năm thứ nhất, số tiền ông Minh nhận được là:
\[100 + 100.0,07 = 100\left( {1 + 0,07} \right) = 107\](triệu đồng).
Sau năm thứ hai, số tiền ông Minh nhận được là:
\[107 + 107.1,07\]\[ = 100.\left( {1 + 0,07} \right) + 100\left( {1 + 0,07} \right).0,07\]
\[ = 100{\left( {1 + 0,07} \right)^2}\]\[ = 114,49\] (triệu đồng).
Theo quy luật đó, ta thấy số tiền mà ông Minh nhận được sau \[n\] năm là số hạng thứ \[n\] của một cấp số nhân có số hạng đầu \[{u_1} = 107\] và công bội \[q = 1,07\].
Vậy số tiền mà ông Minh nhận được sau 10 năm là: \[107.1,{07^9} \approx 196,72\] (triệu đồng).
Lời giải
Hướng dẫn giải
Đáp án đúng là: 5
Ta có: \[y = 3\sin x + 4\cos x + m\]
\[y - m = 3\sin x + 4\cos x\].
Ta có: \[ - \sqrt {{3^2} + {4^2}} \le 3\sin x + 4\cos x \le \sqrt {{3^2} + {4^2}} \].
Nên để phương trình có nghiệm thì \[ - \sqrt {{3^2} + {4^2}} \le y - m \le \sqrt {{3^2} + {4^2}} \].
Suy ra \[ - 5 \le y - m \le 5\] hay \[ - 5 + m \le y \le 5 + m\].
Mà giá trị lớn nhất của hàm số bằng \[10\] nên \[5 + m = 10 \Rightarrow m = 5\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Hướng dẫn giải Đáp án đúng là: A Ta có: \[\left( {Ou,Ov} \right) = - \left( {360^\circ - 60^\circ } \right) = - 300^\circ \]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/16-1760769264.png)