Câu hỏi:

20/10/2025 22 Lưu

Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ bên dưới. Gọi \(I\left( {m;n} \right)\) là tâm đối xứng của đồ thị hàm số đã cho. Giá trị của \(m + n\) bằng bao nhiêu?

Hình ảnh 1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số ta có \(I\left( { - 1;2} \right)\) là tâm đối xứng.

Suy ra \(m = - 1;n = 2\). Do đó \(m + n = 1\).

Trả lời: \(1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đồ thị ta có \(x = 2;x = - 2\) là tiệm cận đứng, \(y = - 1;y = 1\) là tiệm cận ngang.

Có tất cả 4 đường tiệm cận. Chọn A.

Lời giải

a) Ta có \(G\left( {\frac{{1 - 2 + 3}}{3};\frac{{ - 1 + 5 + 4}}{3};\frac{{0 + 3 + 9}}{3}} \right)\)\( \Rightarrow G\left( {\frac{2}{3};\frac{8}{3};4} \right)\).

b) \(M \in \left( {Oxz} \right) \Rightarrow M\left( {a;0;c} \right)\).

Có \(\overrightarrow {AM} = \left( {a - 1;1;c} \right),\overrightarrow {AB} = \left( { - 3;6;3} \right)\)

Theo đề ta có \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng phương \( \Rightarrow \frac{{a - 1}}{{ - 3}} = \frac{1}{6} = \frac{c}{3}\)\( \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\c = \frac{1}{2}\end{array} \right.\).

Do đó \(a + b + c = \frac{1}{2} + 0 + \frac{1}{2} = 1\).

c) \(\overrightarrow {AB} = \left( { - 3;6;3} \right)\).

d) Giả sử \(D\left( {x;y;z} \right)\). Ta có \(\overrightarrow {DC} = \left( {3 - x;4 - y;9 - z} \right)\).

Để \(ABCD\) là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {DC} \) \( \Leftrightarrow \left\{ \begin{array}{l}3 - x = - 3\\4 - y = 6\\9 - z = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 2\\z = 6\end{array} \right. \Rightarrow D\left( {6; - 2;6} \right)\).

Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP