(0,5 điểm) Một người đào ao cá trên thửa ruộng dạng hình tam giác vuông \[ABC\] tại \[A\] có độ dài các cạnh góc vuông \[AB = 6{\rm{ m,}}\] \[AC = 8{\rm{ m}}{\rm{.}}\] Một chiếc máy xúc ở vị trí điểm \[M\] di chuyển trên bờ \[BC.\] Gọi \[MD\] và \[ME\] là khoảng cách từ \[M\] đến bờ \[AB,AC.\] Người đó đào được ao là tứ giác \[ADME\]. Tính diện tích lớn nhất của ao cá mà người đó có thể đào.

Quảng cáo
Trả lời:

Hướng dẫn giải
Đặt \[AD = x\,\,\left( {x > 0} \right)\].
Ta có tứ giác \[ADME\] có \[\widehat {ADE} = \widehat {DAE} = \widehat {AEM} = 90^\circ \] nên \[ADME\] là hình chữ nhật.
Do đó, \[EM = AD = x{\rm{\;(m)}}{\rm{.}}\]
Ta có \(EM\,{\rm{//}}\,AB\) (cùng vuông góc với \(AC)\) nên theo hệ quả định lí Thalès, ta có:
\[\frac{{EM}}{{AB}} = \frac{{CE}}{{CA}}\] hay \[\frac{x}{6} = \frac{{CE}}{8}\] suy ra \[CE = \frac{4}{3}x\].
Ta có \[AE = AC - EC = 8 - \frac{4}{3}x\].
Diện tích hình chữ nhật \[ADME\] là:
\[{S_{ADME}} = AD.AE = x\left( {8 - \frac{4}{3}x} \right)\]\[ = - \frac{4}{3}{x^2} + 8x = - \frac{4}{3}\left( {{x^2} - 6x} \right)\]
\[ = - \frac{4}{3}\left( {{x^2} - 6x + 9} \right) + 12\]\[ = - \frac{4}{3}{\left( {x - 3} \right)^2} + 12\].
Vì \[{\left( {x - 3} \right)^2} \ge 0\] với mọi \(x \in \mathbb{R}\) nên \[ - \frac{4}{3}{\left( {x - 3} \right)^2} \le 0\] với mọi \(x \in \mathbb{R}\).
Do đó \[ - \frac{4}{3}{\left( {x - 3} \right)^2} + 12 \le 12\] với mọi \(x \in \mathbb{R}\).
Dấu “=” xảy ra khi \[x - 3 = 0\] hay \[x = 3.\]
Khi đó \[D\] là trung điểm của \[AB\].
Lúc này, xét \(\Delta ABC\) có \(D\) là trung điểm của \(AB\) và \(DM\,{\rm{//}}\,AC\) (cùng vuông góc với \(AB)\) nên \(DM\) là đường trung bình của tam giác \(ABC,\) suy ra \[M\] là trung điểm của \[BC\].
Như vậy, diện tích lớn nhất của hình chữ nhật \[ADME\] bằng \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\] khi \[M\] là trung điểm của \[BC\].
Vậy diện tích ao cá lớn nhất mà người đó có thể đào là \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\].
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác \(ABC\) vuông tại \(A\), có \(\tan C = \frac{{AB}}{{AC}} = \frac{3}{4}.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Sai. d) Đúng.
• Gọi \(x\) (ml) là thể tích dung dịch nước muối \(1,5\% \) và \(y\) (ml) là thể tích nước cất \(0\% \) (\(x,{\rm{ }}y > 0\)).
Tổng thể tích dung dịch là \(1{\rm{ 000 ml}}\) nên ta có phương trình \(x + y = 1\,\,000\) (1).
Do đó, ý a) là đúng.
• Tổng khối lượng muối trong dung dịch là \(0,9\% \) của \(1{\rm{ 000 ml}}\). Lượng muối trong dung dịch ban đầu là \(1,5\% .x\) và trong nước cất là \(0\).
Do đó ta có: \(0,015x + 0y = 0,009.1\,\,000\) hay \(0,015x = 9\) (2)
Do đó, ý b) là sai.
• Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 1\,\,000\\0,015x = 9\end{array} \right.\).
Do đó, ý c) là sai.
• Giải phương trình \(0,015x = 9\) ta được \(x = 600\) (thỏa mãn).
Thay \(x = 600\) vào phương trình (1), được: \(y = 1\,000 - 600 = 400\) (thỏa mãn).
Vậy Lan cần pha \(600{\rm{ ml}}\) dung dịch nước muối \(1,5\% \) và \(400{\rm{ ml}}\) dung dịch nước cốt \(0\% \) để được dung dịch mong muốn.
Do đó, ý d) là đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.