Phần 2. (2,0 điểm) Câu trắc nghiệm đúng sai
Trong câu 13, 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Hai tổ cùng làm một công việc trong \(15\) giờ thì xong. Nếu tổ I làm trong \(3\) giờ, tổ II làm trong \(5\) giờ thì được \(25\% \) công việc. Gọi \(x,\,\,y\) (giờ) lần lượt là số giờ tổ I, tổ II làm riêng để hoàn thành toàn bộ công việc \(\left( {x,\,\,y > 0} \right).\)
a) Trong 1 giờ, tổ I làm được \(\frac{1}{x}\) (công việc); tổ II làm được \(\frac{1}{y}\) (công việc).
b) Trong 3 giờ, tổ I làm được \(\frac{3}{x}\) (công việc); trong 5 giờ tổ II làm được \(\frac{5}{y}\) (công việc).
c) Hệ phương trình biểu diễn bài toán là \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = 15\\\frac{3}{x} + \frac{5}{y} = \frac{1}{4}\end{array} \right.\).
d) Nếu làm riêng thì tổ I hoàn thành công việc trong 40 giờ, tổ II hoàn thành trong 24 giờ.
Phần 2. (2,0 điểm) Câu trắc nghiệm đúng sai
Trong câu 13, 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Hai tổ cùng làm một công việc trong \(15\) giờ thì xong. Nếu tổ I làm trong \(3\) giờ, tổ II làm trong \(5\) giờ thì được \(25\% \) công việc. Gọi \(x,\,\,y\) (giờ) lần lượt là số giờ tổ I, tổ II làm riêng để hoàn thành toàn bộ công việc \(\left( {x,\,\,y > 0} \right).\)
a) Trong 1 giờ, tổ I làm được \(\frac{1}{x}\) (công việc); tổ II làm được \(\frac{1}{y}\) (công việc).
b) Trong 3 giờ, tổ I làm được \(\frac{3}{x}\) (công việc); trong 5 giờ tổ II làm được \(\frac{5}{y}\) (công việc).
c) Hệ phương trình biểu diễn bài toán là \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = 15\\\frac{3}{x} + \frac{5}{y} = \frac{1}{4}\end{array} \right.\).
d) Nếu làm riêng thì tổ I hoàn thành công việc trong 40 giờ, tổ II hoàn thành trong 24 giờ.
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
• Gọi \(x,\,\,y\) (giờ) lần lượt là số giờ tổ I, tổ II làm riêng để hoàn thành toàn bộ công việc \(\left( {x,\,\,y > 0} \right).\)
Trong 1 giờ, tổ I làm được \(\frac{1}{x}\) (công việc); tổ II làm được \(\frac{1}{y}\) (công việc).
Khi đó, trong 1 giờ, cả hai tổ làm được: \(\frac{1}{x} + \frac{1}{y}\) (công việc).
Do đó, ý a) là đúng.
• Trong 3 giờ, tổ I làm được \(\frac{3}{x}\) (công việc).
Trong 5 giờ, tổ II làm được \(\frac{5}{y}\) (công việc).
Do đó, ý b) là đúng.
• Theo bài, nếu cả hai tổ cùng làm thì sau \(15\) giờ xong công việc nên trong 1 giờ cả hai tổ làm chung được \(\frac{1}{{15}}\) (công việc). Ta có phương trình \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\) (1)
Theo bài, tổ I làm trong 3 giờ, tổ II làm trong 5 giờ thì hoàn thành được \(25\% = \frac{1}{4}\) công việc nên ta có phương trình: \(\frac{3}{x} + \frac{5}{y} = \frac{1}{4}\) (2).
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\\\frac{3}{x} + \frac{5}{y} = \frac{1}{4}\end{array} \right.\).
Do đó, ý c) là sai.
• Từ phương trình thứ nhất, ta được: \(\frac{1}{x} = \frac{1}{{15}} - \frac{1}{y}\).
Thế \(\frac{1}{x} = \frac{1}{{15}} - \frac{1}{y}\) vào phương trình thứ hai, ta được:
\(3\left( {\frac{1}{{15}} - \frac{1}{y}} \right) + \frac{5}{y} = \frac{1}{4}\) hay \(\frac{1}{5} + \frac{2}{y} = \frac{1}{4}\), suy ra \(\frac{2}{y} = \frac{1}{{20}}\) nên \(y = 40\) (thỏa mãn).
Thay \(y = 40\) vào phương trình \(\frac{1}{x} = \frac{1}{{15}} - \frac{1}{y}\), ta được:
\(\frac{1}{x} = \frac{1}{{15}} - \frac{1}{{40}}\) hay \(\frac{1}{x} = \frac{1}{{24}}\), suy ra \(x = 24\) (thỏa mãn).
Vậy tổ I làm riêng trong 24 giờ sẽ hoàn thành công việc, tổ II làm riêng trong 40 giờ sẽ hoàn thành công việc.
Do đó, ý d) là sai.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Vì \(AM,\,\,AN\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) lần lượt tại \(M,\,\,N\) nên \(AM \bot OM,\,\,AN \bot ON.\)
Gọi \[E\] là trung điểm của \[OA\]. Khi đó \(OE = AE = \frac{1}{2}OA.\)
Xét \[\Delta MOA\] vuông tại \[M\] có \[ME\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[ME = \frac{1}{2}OA\].
Xét \[\Delta NOA\] vuông tại \[N\] có \[NE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[NE = \frac{1}{2}OA\].
Vì \[NE = ME = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,M,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].
b) Xét \[\Delta COB\] cân tại \[O\] (do \[OC = OB\]) có \[OI\] là đường trung tuyến nên đồng thời là đường cao, do đó \[OI \bot BC\]. Suy ra \[\Delta IOA\] vuông tại \[I\].
Xét \[\Delta IOA\] vuông tại \[I\] có \[IE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[IE = \frac{1}{2}OA\].
Khi đó, ta có \[NE = IE = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,I,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].
Suy ra \[\widehat {AIN} = \widehat {AON}\] (hai góc nội tiếp cùng chắn cung \[AN\] của đường tròn tâm \[E\]). (*)
Xét đường tròn \(\left( O \right)\) có \[AM,AN\] là hai tiếp tuyến cắt nhau tại \[A\], suy ra \[OA\] là phân giác của \[\widehat {MON}\]
Do đó, \[\widehat {AON} = \frac{1}{2}\widehat {MON}\].
Mà \[\widehat {NFM} = \frac{1}{2}\widehat {MON}\] (góc nội tiếp và góc ở tâm cùng chắn cung \[MN\])
Suy ra \[\widehat {NFM} = \widehat {AON}\] (**)
Từ (*) và (**), suy ra \[\widehat {NFM} = \widehat {AIN}\].
Mà hai góc này ở vị trí đồng vị, do đó \[MF\,{\rm{//}}\,AC\].
c)
⦁ Gọi \(H\) là giao điểm của \(MN\) và \(OA.\)
Ta có \(AM = AN\) (tính chất hai tiếp tuyến cắt nhau) và \(OM = ON\) nên \(A,\,\,O\) cùng nằm trên đường trung trực của \(MN\) hay \(OA\) là đường trung trực của \(MN\).
Suy ra \[MN \bot OA\] hay \[HN \bot OA\].
Xét \[\Delta OHN\] và \[\Delta ONA\], có: \[\widehat {OHN} = \widehat {ONA} = 90^\circ \] và \[\widehat {AON}\] là góc chung
Do đó (g.g)
Suy ra \[\frac{{OH}}{{ON}} = \frac{{ON}}{{OA}}\] suy ra \[OH.OA = O{N^2} = {R^2}\] (3).
⦁ Ta có \(OC = OB,\,\,IC = IB\) (do \(I\) là trung điểm của \(BC),\) \(KC = KB\) (tính chất hai tiếp tuyến cắt nhau) nên ba điểm \(O,\,\,I,\,\,K\) thẳng hàng.
Xét \[\Delta OIB\] và \[\Delta OBK\], có: \[\widehat {OIB} = \widehat {OBK} = 90^\circ \] và \[\widehat {BOK}\] là góc chung
Do đó (g.g)
Suy ra \[\frac{{OI}}{{OB}} = \frac{{OB}}{{OK}}\] suy ra \[OI.OK = O{B^2} = {R^2}\] (4).
Từ (3) và (4) suy ra \[OI.OK = OH.OA = {R^2}.\] Từ đó, ta có \[\frac{{OI}}{{OH}} = \frac{{OA}}{{OK}}\].
Xét \[\Delta OIA\] và \[\Delta OHK\] có: \[\widehat {AOK}\] là góc chung và \[\frac{{OI}}{{OH}} = \frac{{OA}}{{OK}}\]
Do đó (c.g.c)
Suy ra \[\widehat {OHK} = \widehat {OIA} = 90^\circ \], suy ra \[HK \bot OA\].
Mà \[MN \bot OA\] tại \[H\] và \[MN\] cố định (do điểm \(A\) cố định), do đó \[K\] thuộc \[MN\] cố định.
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Đúng.
• Theo đề bài, phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\) hay \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(\frac{{AC}}{{AB}} = \frac{2}{3}\).
Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\). Do đó, ý a) là đúng.
• Vì \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\) nên \(\alpha = \widehat {ABC} \approx 41^\circ 49'.\) Do đó, ý b) là đúng.
• Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(AC = BC \cdot \tan \widehat {ABC} \approx 5 \cdot \tan 41^\circ 49' \approx 4,47{\rm{\;(m)}}{\rm{.}}\)
Mà \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(AB = \frac{3}{2}AC \approx \frac{3}{2} \cdot 4,47 = 6,705{\rm{ (m)}}{\rm{.}}\)
Độ dài phần ngọn bị gãy là độ dài đoạn thẳng \(AB\). Do đó, ý c) là sai.
• Độ dài cây ban đầu là tổng của phần ngọn bị gãy \(AB\) và phần gốc \(AC\).
Vậy chiều cao ban đầu của cây khoảng: \[4,47 + 6,705 = 11,175 \approx 11,18{\rm{\;(m)}}{\rm{.}}\]Do đó, ý d) là đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.