(0,5 điểm) Một sợi dây thép \(AC\) có chiều dài \({\rm{8 m}}\)được chia thành hai phần \(AB,\,\,BC\) (như hình vẽ minh họa dưới đây).

Mỗi phần đều được uốn thành một hình vuông. Hỏi phải chia sợi dây ban đầu như thế nào để tổng diện tích hai hình vuông thu được sau khi uốn là nhỏ nhất?
(0,5 điểm) Một sợi dây thép \(AC\) có chiều dài \({\rm{8 m}}\)được chia thành hai phần \(AB,\,\,BC\) (như hình vẽ minh họa dưới đây).

Mỗi phần đều được uốn thành một hình vuông. Hỏi phải chia sợi dây ban đầu như thế nào để tổng diện tích hai hình vuông thu được sau khi uốn là nhỏ nhất?
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi cạnh hình vuông được uốn từ đoạn \(AB\) là \(x\) (\(0 < x < 8\), đơn vị: m).
Lúc này, độ dài đoạn \(AB\) chính là chu vi hình vuông đó và bằng \(4x\) (m).
Do đó, độ dài đoạn \(BC\) là \(8 - 4x\) (m).
Suy ra, độ dài cạnh hình vuông được uốn bởi đoạn \(BC\) là \(\frac{{8 - 4x}}{4} = 2 - x\) (m).
Tổng diện tích hai hình vuông lúc này là: \({x^2} + {\left( {2 - x} \right)^2}{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Ta có: \({x^2} + {\left( {2 - x} \right)^2} = 2{x^2} - 4x + 4 = 2\left( {{x^2} - 2x + 1} \right) + 2 = 2{\left( {x - 1} \right)^2} + 2 \ge 2\).
Tổng diện tích hai hình vuông đạt giá trị nhỏ nhất bằng \(2{\rm{ }}{m^2}\) khi \(x - 1 = 0\) hay \(x = 1.\)
Khi đó, độ dài đoạn thẳng \(AB = 4{\rm{ m}}\)và độ dài đoạn thẳng \(BC = 8 - 4 = 4{\rm{ m}}\) hay \(B\) là trung điểm của đoạn \(AC\).
Vậy để tổng diện tích hai hình vuông đạt giá trị nhỏ nhất thì ta chia đoạn dây thép thành hai phần bằng nhau \(AB = BC = 4{\rm{\;m}}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Đúng.
• Theo đề bài, phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\) hay \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(\frac{{AC}}{{AB}} = \frac{2}{3}\).
Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\). Do đó, ý a) là đúng.
• Vì \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\) nên \(\alpha = \widehat {ABC} \approx 41^\circ 49'.\) Do đó, ý b) là đúng.
• Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(AC = BC \cdot \tan \widehat {ABC} \approx 5 \cdot \tan 41^\circ 49' \approx 4,47{\rm{\;(m)}}{\rm{.}}\)
Mà \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(AB = \frac{3}{2}AC \approx \frac{3}{2} \cdot 4,47 = 6,705{\rm{ (m)}}{\rm{.}}\)
Độ dài phần ngọn bị gãy là độ dài đoạn thẳng \(AB\). Do đó, ý c) là sai.
• Độ dài cây ban đầu là tổng của phần ngọn bị gãy \(AB\) và phần gốc \(AC\).
Vậy chiều cao ban đầu của cây khoảng: \[4,47 + 6,705 = 11,175 \approx 11,18{\rm{\;(m)}}{\rm{.}}\]Do đó, ý d) là đúng.
Lời giải
Hướng dẫn giải
Đáp án: 1
Ta có: Điều kiện xác định: \(x \ne 0,{\rm{ }}x \ne 3\).
Ta có: \(\frac{{2x - 5}}{{x - 3}} - \frac{1}{x} = \frac{{6x + 3}}{{{x^2} - 3x}}\)
\(\frac{{\left( {2x - 5} \right)x}}{{\left( {x - 3} \right)x}} - \frac{{x - 3}}{{x\left( {x - 3} \right)}} = \frac{{6x + 3}}{{\left( {x - 3} \right)x}}\)
\(\frac{{2{x^2} - 5x - x + 3}}{{\left( {x - 3} \right)x}} = \frac{{6x + 3}}{{\left( {x - 3} \right)x}}\)
\(2{x^2} - 5x - x + 3 = 6x + 3\)
\(2{x^2} - 5x - x + 3 - 6x - 3 = 0\)
\(2{x^2} - 12x = 0\)
\(2x\left( {x - 6} \right) = 0\)
Suy ra \(x = 0\)(loại) hoặc \(x = 6\)(TM).
Vậy \(x = 6\) là nghiệm của phương trình.
Vậy có 1 giá trị của \(x\) thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
