Câu hỏi:

22/10/2025 21 Lưu

B. TỰ LUẬN (3,0 điểm)

(1,0 điểm) Cho biểu thức \(P = \left( {\frac{{x - 2}}{{x + 2\sqrt x }} + \frac{1}{{\sqrt x + 2}}} \right) \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\) với \(x > 0\)\(x \ne 1.\)

    a) Chứng minh rằng \(P = \frac{{\sqrt x + 1}}{{\sqrt x }}.\)

    b) Tìm các giá trị của \(x\) để \(2P = 2\sqrt x + 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Với \(x > 0,{\rm{ }}x \ne 1\) ta có:

\(P = \left( {\frac{{x - 2}}{{x + 2\sqrt x }} + \frac{1}{{\sqrt x + 2}}} \right) \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\)

   \( = \left[ {\frac{{x - 2}}{{\left( {\sqrt x + 2} \right)\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x \left( {\sqrt x + 2} \right)}}} \right] \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\)

   \[ = \frac{{x - 2 + \sqrt x }}{{\left( {\sqrt x + 2} \right)\sqrt x }} \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\]

   \[ = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\sqrt x }} \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\]

   \[ = \frac{{\sqrt x + 1}}{{\sqrt x }}\].

Vậy với \(x > 0,{\rm{ }}x \ne 1\) ta có \(P = \frac{{\sqrt x + 1}}{{\sqrt x }}.\)

b) Ta có \(P = \frac{{\sqrt x + 1}}{{\sqrt x }}\).

Theo đề, để \(2P = 2\sqrt x + 5\) thì \(\frac{{2\left( {\sqrt x + 1} \right)}}{{\sqrt x }} = 2\sqrt x + 5\)

Suy ra \(2\sqrt x + 2 = 2x + 5\sqrt x \) hay \(2x + 3\sqrt x - 2 = 0\) do đó \(\left( {\sqrt x + 2} \right)\left( {\sqrt x - \frac{1}{2}} \right) = 0\)

Suy ra \(\sqrt x + 2 = 0\) hoặc \(\sqrt x - \frac{1}{2} = 0\).

Do đó, \(\sqrt x = - 2\) (vô lí) hoặc \(\sqrt x = \frac{1}{2}\).

Suy ra \(x = \frac{1}{4}\) (thỏa mãn).

Vậy \(x = \frac{1}{4}\) thì \(2P = 2\sqrt x + 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 720

Gọi chiều dài, chiều rộng của sân trường lần lượt là \(x,\,y\,\,\left( {\rm{m}} \right).\)

Điều kiện: \(x > 16,\,\,y > 0\).

Theo đề, chiều dài hơn chiều rộng \(16\,\,{\rm{m}}\)nên \(x - y = 16\). (1)

Hai lần chiều dài kém 5 lần chiều rộng \(28\,\,{\rm{m}}\)nên \(5y - 2x = 28\,{\rm{.}}\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 16\\5y - 2x = 28\end{array} \right.\).

Từ (1) có \(x = 16 + y\) thay vào (2) được: \(5y - 2\left( {16 + y} \right) = 28\,\) hay \(3y - 32 = 28\,{\rm{.}}\)

Suy ra \(3y = 60\) nên \(y = 20\) (thỏa mãn).

Do đó, \(x = 16 + 20 = 36\) (thỏa mãn)

Vậy diện tích sân trường là \(36 \cdot 20 = 720\,\,\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Hướng dẫn giải

Đáp án: −16

Ta có: \[\frac{{x + 1}}{3} - \frac{{x - 2}}{2} \ge 4\]

\[\frac{{2\left( {x + 1} \right)}}{6} - \frac{{3\left( {x - 2} \right)}}{6} \ge 4\]

\[\frac{{2\left( {x + 1} \right) - 3\left( {x - 2} \right)}}{6} - 4 \ge 0\]

\[\frac{{8 - x - 24}}{6} \ge 0\]

\[\frac{{ - x - 16}}{6} \ge 0\]

\[ - x - 16 \ge 0\]

\[x \le - 16\].

Do đó, giá trị nguyên lớn nhất thỏa mãn bất phương trình trên là \(x = - 16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP