(0,5 điểm) Bạn Nam làm một căn nhà đồ chơi bằng gỗ có phần mái là một chóp tứ giác đều. Biết các cạnh bên của mái nhà bạn Nam dùng các thanh gỗ có chiều dài \(16{\rm{ cm}}\). Bạn Nam dự định dùng giấy màu để phủ kín phần mái nhà. Gọi độ dài cạnh đáy của phần mái là \(2x{\rm{ }}\left( {{\rm{cm}}} \right)\). Hỏi diện tích giấy màu cần sử dụng nhiều nhất là bao nhiêu?

(0,5 điểm) Bạn Nam làm một căn nhà đồ chơi bằng gỗ có phần mái là một chóp tứ giác đều. Biết các cạnh bên của mái nhà bạn Nam dùng các thanh gỗ có chiều dài \(16{\rm{ cm}}\). Bạn Nam dự định dùng giấy màu để phủ kín phần mái nhà. Gọi độ dài cạnh đáy của phần mái là \(2x{\rm{ }}\left( {{\rm{cm}}} \right)\). Hỏi diện tích giấy màu cần sử dụng nhiều nhất là bao nhiêu?

Quảng cáo
Trả lời:
⦁ Diện tích giấy màu cần sử dụng chính bằng tổng diện tích bốn mặt bên là các tam giác cân có cạnh bên bằng \(16{\rm{ cm}}\) và cạnh đáy là \(2x{\rm{ cm}}\).

Xét tam giác \(SBC\), kẻ đường cao \(SH \bot BC\) tại \(H\).
Do tam giác \(SBC\) cân tại \(S\) nên \(SH\) vừa là đường cao, vừa là đường trung tuyến của tam giác, suy ra \(H\) là trung điểm của \(BC\).
Suy ra \(BH = HC = \frac{{BC}}{2} = x{\rm{ (cm) }}\left( {0 < x < 16} \right)\).
Áp dụng định lí Pythagore vào tam giác \(SHC\) vuông tại \(H\), ta có: \(S{H^2} + H{C^2} = S{C^2}\)
Suy ra \(S{H^2} = {16^2} - {x^2} = 256 - {x^2}.\)
Do đó \(SH = \sqrt {256 - {x^2}} {\rm{\;(cm)}}{\rm{.}}\)
Diện tích tam giác \(SBC\) là \(\frac{1}{2}SH \cdot BC = \frac{1}{2} \cdot \sqrt {256 - {x^2}} \cdot 2x = x\sqrt {256 - {x^2}} {\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Diện tích giấy màu cần sử dụng là \(S = 4x\sqrt {256 - {x^2}} {\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
⦁ Yêu cầu bài toán đưa về thực hiện tìm giá trị lớn nhất của \(S = 4x\sqrt {256 - {x^2}} {\rm{ }}\)với \(0 < x < 16\).
Ta có: \(4x\sqrt {256 - {x^2}} = 4\sqrt {256{x^2} - {x^4}} \)
\( = 4\sqrt { - \left( {{x^4} - 2 \cdot 128{x^2} + {{128}^2}} \right) + {{128}^2}} \)
\( = 4\sqrt { - {{\left( {{x^2} - 128} \right)}^2} + {{128}^2}} \le 4\sqrt {{{128}^2}} = 512\)
Do đó, \(S \le 512\).
Dấu “=” xảy ra khi và chỉ khi \({x^2} - 128 = 0\) hay \(x = 8\sqrt 2 \) (do \(0 < x < 16)\).
Vậy diện tích giấy màu cần sử dụng nhiều nhất là \(512{\rm{ c}}{{\rm{m}}^2}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 720
Gọi chiều dài, chiều rộng của sân trường lần lượt là \(x,\,y\,\,\left( {\rm{m}} \right).\)
Điều kiện: \(x > 16,\,\,y > 0\).
Theo đề, chiều dài hơn chiều rộng \(16\,\,{\rm{m}}\)nên \(x - y = 16\). (1)
Hai lần chiều dài kém 5 lần chiều rộng \(28\,\,{\rm{m}}\)nên \(5y - 2x = 28\,{\rm{.}}\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 16\\5y - 2x = 28\end{array} \right.\).
Từ (1) có \(x = 16 + y\) thay vào (2) được: \(5y - 2\left( {16 + y} \right) = 28\,\) hay \(3y - 32 = 28\,{\rm{.}}\)
Suy ra \(3y = 60\) nên \(y = 20\) (thỏa mãn).
Do đó, \(x = 16 + 20 = 36\) (thỏa mãn)
Vậy diện tích sân trường là \(36 \cdot 20 = 720\,\,\left( {{{\rm{m}}^2}} \right)\).
Lời giải
Hướng dẫn giải
Đáp án: −16
Ta có: \[\frac{{x + 1}}{3} - \frac{{x - 2}}{2} \ge 4\]
\[\frac{{2\left( {x + 1} \right)}}{6} - \frac{{3\left( {x - 2} \right)}}{6} \ge 4\]
\[\frac{{2\left( {x + 1} \right) - 3\left( {x - 2} \right)}}{6} - 4 \ge 0\]
\[\frac{{8 - x - 24}}{6} \ge 0\]
\[\frac{{ - x - 16}}{6} \ge 0\]
\[ - x - 16 \ge 0\]
\[x \le - 16\].
Do đó, giá trị nguyên lớn nhất thỏa mãn bất phương trình trên là \(x = - 16\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.