Câu hỏi:

23/10/2025 783 Lưu

Từ hai vị trí \[A\] và \[B\] của một tòa nhà, người ta dùng một dụng cụ quan sát đỉnh \[C\] của ngọn núi (như hình vẽ). Biết rằng chiều cao \[AB\] của tòa nhà là \[70\,\,{\rm{m,}}\] phương nhìn \[AC\] tạo với phương ngang góc \[42^\circ ,\] phương nhìn \[BC\] tạo với phương ngang góc \[21^\circ 30'\].

Từ hai vị trí \[A\] và \[B\] của một tòa nhà, người ta dùng một dụn (ảnh 1)

a) \[CH = AH \cdot \tan 42^\circ .\]

b) \[CD = 70 \cdot \tan 42^\circ .\]

c) Ngọn núi có chiều cao so với mặt đất vào khoảng \[115\,\,{\rm{m}}\].

d) Ngọn núi cao hơn tòa nhà là \[54\,\,{\rm{m}}{\rm{.}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]

b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)

Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].

c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ  - AH \cdot \tan 21^\circ 30' = 70\]

\[AH\left( {\tan 42^\circ  - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ  - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]

Do đó \[CH = AH \cdot \tan 42^\circ  \approx 138,21 \cdot \tan 42^\circ  \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.

Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]

d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do mặt đất là phương ngang nên \[\widehat {BCA} = 30^\circ \] và \[\widehat {BDA} = 60^\circ \].

Gọi \[x\] (m/phút) là vận tốc xe máy, điều kiện \[x > 0\].

Vì xe máy đi từ \[C\] đến \[D\] trong \[6\] phút nên \[CD = 6x\,\,\left( {\rm{m}} \right)\]

• Xét \[\Delta ABC\] vuông tại \[A\], ta có:

\[AC = AB \cdot \cot \widehat {BCA} = AB \cdot \cot 30^\circ  = AB \cdot \tan 60^\circ  = \sqrt 3 AB\] (do \[\cot 30^\circ  = \tan 60^\circ \]) \[\left( 1 \right)\]

• Xét \[\Delta ABD\] vuông tại \[A\], ta có:

\[AD = AB \cdot \,\cot \widehat {BDA} = AB \cdot \,\cot 60^\circ  = AB \cdot \tan 30^\circ  = \frac{{\sqrt 3 AB}}{3}\] (do \[\cot 60^\circ  = \tan 30^\circ \]) \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[AC - AD = AB\left( {\sqrt 3  - \frac{{\sqrt 3 }}{3}} \right)\] nên \[CD = \frac{{2\sqrt 3 }}{3}AB\].

Ta có \[\frac{{AD}}{{CD}} = \frac{{\sqrt 3 AB}}{3}:\frac{{2\sqrt 3 }}{3}AB = \frac{1}{2}\].

Suy ra \[AD = \frac{1}{2}CD = \frac{1}{2} \cdot 6x = 3x\,\,({\rm{m}}).\]

Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{{3x}}{x} = 3\] (phút).

Đáp án: 3.

Lời giải

Chọn C

Gắn dữ kiện của bài toán vào m (ảnh 2)

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.

Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].

Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.

Suy ra \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].

Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN \cdot \tan M.\]

Ta có:\[AH = AN + NH\]suy ra \[AH = MN \cdot \tan M + NH\].

Do đó \[AH = 13,65 \cdot \tan 58^\circ  + 1,55 \approx 23,39\,\,({\rm{m}}).\]

Vậy chiều cao của tháp khoảng \[23,39\,\,{\rm{m}}\].

Câu 3

A. 19 phút 17 giây.                                              
B. 18 phút 26 giây.                                C. 22 phút 15 giây.                                               D. 21 phút 58 giây.
B. 18 phút 26 giây.                                
C. 22 phút 15 giây.                                               
D. 21 phút 58 giây.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {ABH} \approx 67^\circ .\)           
B. \(\widehat {ABH} \approx 69^\circ .\)                                  
C. \(\widehat {ABH} \approx 66^\circ .\)                                  
D. \(\widehat {ABH} \approx 68^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP