Một con robot xuất phát từ A đi thẳng đến B. Nó được lập trình cứ tiến 6 bước thì lùi lại 2 bước và để đến được B thì con robot đã thực hiện tổng cộng 126 bước. Hỏi khoảng cách từ A đến B dài bao nhiêu mét, biết mỗi bước đi của robot dài \(5{\rm{\;dm}}.\)
Một con robot xuất phát từ A đi thẳng đến B. Nó được lập trình cứ tiến 6 bước thì lùi lại 2 bước và để đến được B thì con robot đã thực hiện tổng cộng 126 bước. Hỏi khoảng cách từ A đến B dài bao nhiêu mét, biết mỗi bước đi của robot dài \(5{\rm{\;dm}}.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Vì robot được lập trình cứ tiến 6 bước thì lùi 2 bước nên mỗi lượt thực hiện một lập trình, robot đi được quãng đường là: \(6 \cdot 5 - 2 \cdot 5 = 20{\rm{\;dm}}{\rm{.}}\)
Như vậy, mỗi lần thực hiện một lập trình robot đi được quãng đường \(20{\rm{\;dm}}\) và bước tổng \(6 + 2 = 8\) bước.
Ta có: \(126:8 = 15\) dư 6.
Do đó để đến B thì robot đã thực hiện 15 lập trình và bước thêm 6 bước.
Khi đó, quãng đường robot đi được là: \(15 \cdot 20 + 6 \cdot 5 = 330{\rm{\;(dm)}}{\rm{.}}\)
Vậy khoảng cách từ A đến B dài 330 dm.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Vì \(n \in \mathbb{Z}\) nên \(\left( {n - 2} \right)\,\, \vdots \,\,\left( {n - 2} \right)\).
Mà \(\left( {n + 3} \right)\,\, \vdots \,\,\left( {n - 2} \right)\) nên \[\left[ {\left( {n + 3} \right) - \left( {n + 2} \right)} \right]\,\, \vdots \,\,\left( {n - 2} \right)\] hay \[1\,\, \vdots \,\,\left( {n - 2} \right)\].
Do đó \(\left( {n - 2} \right) \in \)Ư\(\left( 1 \right) = \left\{ {1;\,\, - 1} \right\}.\)
⦁ Với \(n - 2 = 1,\) suy ra \(n = 3\) (thỏa mãn);
⦁ Với \(n - 2 = - 1,\) suy ra \(n = 1\) (thỏa mãn).
Vậy \(n \in \left\{ {3;\,\,1} \right\}.\)
Lời giải
Hướng dẫn giải
Gọi chiều rộng hình chữ nhật nhỏ là \(b\), chiều dài hình chữ nhật nhỏ là \(a\,\,\left( {x,b > 0,\,\,{\rm{m}}} \right)\).
Chu vi của khu vườn hình chữ nhật là \(\left( {2a + a + 2b} \right) \cdot 2 = 76\)
Hay \(6a + 4b = 76\) (1)
Ta có \(2a = 5b\) nên \(6a = 15b\) (2)
Thay (2) vào (1) ta được \(15b + 4b = 76\) hay \(19b = 76\) nên \(b = 76:19\) suy ra \(b = 4.\)
Suy ra \(a = 10\,\,\left( {\rm{m}} \right)\).
Suy ra chiều dài ban đầu của khu vườn là \(2 \cdot 10 = 20{\rm{ }}\left( {\rm{m}} \right)\).
Chiều rộng ban đầu của khu vườn là: \(a + 2b = 10 + 2 \cdot 4 = 18{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích ban đầu của khu vườn là: \(20 \cdot 18 = 360{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vậy diện tích khu vườn ban đầu là \(360{\rm{ }}{{\rm{m}}^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
