Cho hình chóp tam giác đều \(S.ABC\) như hình vẽ:

Biết rằng \(AB = 12\;{\rm{cm,}}\;\,SI = \frac{4}{3}AB.\) Khi đó:
( a) \(O\) là trọng tâm của tam giác \(ABC.\)
(b) \(I\) là trung điểm của \(BC.\)
(c) \(SI\) là trung đoạn của hình chóp \(S.ABC.\)
(d) Diện tích xung quanh của hình chóp \(S.ABC\) bằng \(144\;{\rm{c}}{{\rm{m}}^2}.\)
Quảng cáo
Trả lời:
a) Đúng.
Vì \(O\) là giao điểm của hai đường trung tuyến \(BK\) và \(CD\) của tam giác \(ABC\) nên \(O\) là trọng tâm của tam giác \(ABC.\)
b) Đúng.
Vì \(AO\) cắt \(BC\) tại \(I\) và \(O\) là trọng tâm của tam giác \(ABC\) nên \(AI\) là trung tuyến của tam giác \(ABC.\) Do đó, \(I\) là trung điểm của \(BC.\)
c) Đúng.
Vì \(S.ABC\) là hình chóp tam giác đều nên tam giác \(SBC\) cân tại \(S.\) Do đó, \(SI\) là đường trung tuyến đồng thời là đường cao của tam giác \(SBC.\) Do đó, \(SI\) là trung đoạn của hình chóp \(S.ABC.\)
d) Sai.
Ta có: \(SI = \frac{4}{3} \cdot 12 = 16\;\,\left( {{\rm{cm}}} \right).\)
Diện tích xung quanh của hình chóp \(S.ABC\) là: \(\frac{1}{2}\left( {12 + 12 + 12} \right) \cdot 16 = 288\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích xung quanh của hình chóp \(S.ABC\) bằng \(288\;\,{\rm{c}}{{\rm{m}}^2}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\) Gọi đường cao của mặt đáy là \(CH\), ta có \(CH\) đồng thời là đường trung tuyến.
\(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)
b) Đúng.
Xét tam giác \(BHC\) vuông tại \(H\). Theo định lý Pythagore ta có: \(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\) suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).
c) Sai.
Vì \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).
Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)
Xét tam giác \(SHG\) vuông tại \(G\). Theo định lý Pythagore, ta có:
\(S{H^2} = S{G^2} + H{G^2}\)
\(S{H^2} = {90^2} + {30^2} = 9000\)
Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\)
d) Đúng.
Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\)
Vậy diện tích xung quanh của hình chóp là \(S = P.d = 90.30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Lời giải
a) Đúng.
Phần dưới của khối bê tông có dạng hình hộp chữ nhật, đáy là hình vuông có cạnh \(4{\rm{ dm,}}\) chiều cao \({\rm{2,5 dm}}{\rm{.}}\)
Do đó, thể tích của khối bê tông này là: \({V_1} = S.h = {4^2}.2,5 = 40{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\)
b) Đúng.
Phần trên của khối bê tông có dạng hình chóp tứ giác đều có độ dài cạnh của mặt đáy là \(4{\rm{ dm,}}\) chiều cao là \({\rm{10 dm}}{\rm{.}}\)
Do đóm thể tích của khối bê tông hình chóp này là: \({V_2} = \frac{1}{3}S.h = \frac{1}{3}{.4^2}.10 = \frac{{160}}{3}{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).
c) Đúng.
Tỉ lệ thể tích khối bê tông dạng hình hộp chữ nhật so với khối bê tông hình chóp là
\(40:\frac{{160}}{3} = \frac{3}{4}\).
d) Sai.
Vậy thể tích của khối bê tông trên gồm hai khối là khối hình hộp chữ nhật và khối hình chóp tứ giác đều.
Vậy thể tích của khối bê tông này là: \(40 + \frac{{160}}{3} = \frac{{280}}{3} \approx 93,3{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).
Câu 3
đường cao.
cạnh bên.
cạnh đáy.
đường chéo.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(150\,\;{\rm{c}}{{\rm{m}}^2}.\)
\(150\;\,{\rm{c}}{{\rm{m}}^3}.\)
\(50\;\,{\rm{c}}{{\rm{m}}^3}.\)
\(50\;\,{\rm{c}}{{\rm{m}}^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Nửa chu vi đáy nhân với đường cao.
Chu vi đáy nhân với trung đoạn.
Nửa chu vi đáy nhân với trung đoạn.
Chu vi đáy nhân với chiều cao.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Đoạn thẳng nối đỉnh của hình chóp và trọng tâm của tam giác đáy.
Đoạn thẳng nối đỉnh của hình chóp và trung điểm của một cạnh đáy.
Đoạn thẳng nối đỉnh của hình chóp và một điểm tùy ý nằm trong mặt đáy.
Đoạn thẳng nối đỉnh của hình chóp và một điểm bất kì trên cạnh bên của hình chóp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



