Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = {\log _2}\left( {{x^2} - 3x + 2} \right)\).
a) Hàm số có giá trị lớn nhất trên khoảng \(\left( {2; + \infty } \right)\).
b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\).
c) Trên đoạn \(\left[ { - 1;0} \right]\) hàm số có giá trị nhỏ nhất bằng 1.
d) Gọi \({m_0}\) là giá trị của tham số \(m\) để hàm số \(g\left( x \right) = {2^{f\left( x \right)}} + m\) có giá trị nhỏ nhất trên đoạn \(\left[ {3;4} \right]\) bằng \( - 3\). Khi đó \({m_0} \in \left( { - 5;0} \right)\).
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = {\log _2}\left( {{x^2} - 3x + 2} \right)\).b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\).
c) Trên đoạn \(\left[ { - 1;0} \right]\) hàm số có giá trị nhỏ nhất bằng 1.
d) Gọi \({m_0}\) là giá trị của tham số \(m\) để hàm số \(g\left( x \right) = {2^{f\left( x \right)}} + m\) có giá trị nhỏ nhất trên đoạn \(\left[ {3;4} \right]\) bằng \( - 3\). Khi đó \({m_0} \in \left( { - 5;0} \right)\).
Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \).
b) Vì \(\left[ { - 1;0} \right] \subset D\) và hàm số liên tục trên \(\left[ { - 1;0} \right]\) nên luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn này.
c) \(f\left( x \right) = {\log _2}\left( {{x^2} - 3x + 2} \right) \Rightarrow f'\left( x \right) = \frac{{2x - 3}}{{\left( {{x^2} - 3x + 2} \right)\ln 2}}\)
\(f'\left( x \right) = 0 \Leftrightarrow x = - \frac{3}{2} \notin \left[ { - 1;0} \right]\).
Ta có \(f\left( { - 1} \right) = {\log _2}6;f\left( 0 \right) = 1 < {\log _2}6\)
Vậy \(\mathop {\min }\limits_{\left[ { - 1;0} \right]} f\left( x \right) = 1\).
d) TXĐ \(D = \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\) chứa \(\left[ {3;4} \right]\).
\(g\left( x \right) = {2^{f\left( x \right)}} + m = {2^{{{\log }_2}\left( {{x^2} - 3x + 2} \right)}} + m = {x^2} - 3x + 2 + m\).
Có \(g'\left( x \right) = 2x - 3,g'\left( x \right) = 0 \Leftrightarrow x = \frac{3}{2} \notin \left[ {3;4} \right]\).
Mà hàm số đồng biến trên \(\left[ {3;4} \right]\) nên \(\mathop {\min }\limits_{\left[ {3;4} \right]} g\left( x \right) = g\left( 3 \right) = 2 + m\).
Theo đề ta có \(2 + m = - 3 \Leftrightarrow m = - 5\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) với \(x \in (0; + \infty )\).
Ta có: \(f'(x) = \frac{{{x^2} - 9}}{{{x^2}}}\). Khi đó, \(f'(x) = 0 \Leftrightarrow x = 3\) (do \(\left. {x > 0} \right)\).
Ngoài ra \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).
Bảng biến thiên của hàm số như sau:

Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{(0; + \infty )} f(x) = 6\) tại \(x = 3\) và hàm số \(f(x)\) không có giá trị lớn nhất.
Trả lời: 6.
Câu 2
Lời giải
Ta có: \(f'\left( x \right) = \left( {2x - 5} \right){e^{2x}}\).
\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\).
Bảng biến thiên của hàm số:

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\). Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
