Một chất điểm chuyển động theo phương trình \(s\left( t \right) = - {t^3} + 6{t^2} + t + 3\), trong đó \(t\) tính bằng giây kể từ lúc chất điểm bắt đầu chuyển động và \(s\) tính bằng mét. Tính quãng đường chất điểm đi được kể từ lúc bắt đầu chuyển động đến khi chất điểm có vận tốc tức thời lớn nhất.
Một chất điểm chuyển động theo phương trình \(s\left( t \right) = - {t^3} + 6{t^2} + t + 3\), trong đó \(t\) tính bằng giây kể từ lúc chất điểm bắt đầu chuyển động và \(s\) tính bằng mét. Tính quãng đường chất điểm đi được kể từ lúc bắt đầu chuyển động đến khi chất điểm có vận tốc tức thời lớn nhất.
Quảng cáo
Trả lời:
Ta có \(v\left( t \right) = s'\left( t \right) = - 3{t^2} + 12t + 1\).
Ta có \(v'\left( t \right) = - 6t + 12 = 0 \Leftrightarrow t = 2\).
Bảng biến thiên

Chất điểm đạt vận tốc lớn nhất tại \(t = 2\).
Khi đó \(s\left( 2 \right) = - {2^3} + {6.2^2} + 2 + 3 = 21\).
Trả lời: 21.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) với \(x \in (0; + \infty )\).
Ta có: \(f'(x) = \frac{{{x^2} - 9}}{{{x^2}}}\). Khi đó, \(f'(x) = 0 \Leftrightarrow x = 3\) (do \(\left. {x > 0} \right)\).
Ngoài ra \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).
Bảng biến thiên của hàm số như sau:

Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{(0; + \infty )} f(x) = 6\) tại \(x = 3\) và hàm số \(f(x)\) không có giá trị lớn nhất.
Trả lời: 6.
Câu 2
Lời giải
Ta có: \(f'\left( x \right) = \left( {2x - 5} \right){e^{2x}}\).
\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\).
Bảng biến thiên của hàm số:

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
