Đề cương ôn tập cuối kì 1 Toán 12 Kết nối tri thức cấu trúc mới (có tự luận) có đáp án - Bài 2: Tính đơn điệu và cực trị của hàm số
39 người thi tuần này 4.6 465 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
210 câu Bài tập Tích phân cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Từ đồ thị ta có: \[\left\{ \begin{array}{l}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 2} \right) = - 4\\M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 1} \right) = 2\end{array} \right. \Rightarrow M + m = - 2\]. Chọn D.
Câu 2
Lời giải
Ta có \(y' = 1 - \frac{4}{{{x^2}}} \Rightarrow y' = 0 \Leftrightarrow {x^2} = 4 \Rightarrow x = 2\) (vì \(x \in \left( {1;5} \right)\)).
Khi đó \(y\left( 1 \right) = 5\), \(y\left( 2 \right) = 4\) và \(y\left( 5 \right) = \frac{{29}}{5}\).
Do đó \(\mathop {\min }\limits_{\left[ {1;5} \right]} y = 4\) tại \(x = 2\). Chọn B.
Câu 3
Lời giải
Ta có \(f'\left( x \right) = 3{x^2} - 16x + 16,f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4 \notin \left( {1;3} \right)\\x = \frac{4}{3} \in \left( {1;3} \right)\end{array} \right.\).
\(f\left( 1 \right) = 0;f\left( {\frac{4}{3}} \right) = \frac{{13}}{{27}};f\left( 3 \right) = - 6\).
Do đó \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = \frac{{13}}{{27}}\). Chọn B.
Câu 4
Lời giải
Ta có: \(f'\left( x \right) = \left( {2x - 5} \right){e^{2x}}\).
\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\).
Bảng biến thiên của hàm số:

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\). Chọn A.
Câu 5
Lời giải
Vì \[s = \frac{1}{3}{t^3} - {t^2} + 9t \Rightarrow v = {t^2} - 2t + 9\].
Xét hàm \[f\left( t \right) = {t^2} - 2t + 9 \Rightarrow f'\left( t \right) = 2t - 2 = 0 \Rightarrow t = 1\].
Bảng biến thiên

Dựa vào bảng biến thiên ta thấy: \[\mathop {\max }\limits_{\left[ {0;10} \right]} f\left( t \right) = f\left( {10} \right) = 89\].
Vậy vận tốc của vật đạt được lớn nhất bằng \[89\left( {{\rm{m/s}}} \right).\] Chọn A.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Từ đồ thị ta có: \[\left\{ \begin{array}{l}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 2} \right) = - 4\\M = \mathop {\max }\limits_{\left[ { - 1 (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761388534.png)

